• Title/Summary/Keyword: 스트링 커널

Search Result 6, Processing Time 0.019 seconds

String Kernel-based Relation Extraction using Lexical Patterns of Predicate-Argument Structure (술어-논항 구조의 어휘 패턴을 이용한 스트링 커널 기반 관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Chun, Hong-Woo;Hong, Soon-Chan;Jung, Han-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.327-329
    • /
    • 2012
  • 문서 내에 존재하는 중요한 개체들 간의 관계를 자동으로 추출할 때 개체와 개체 사이의 상호작용 표현에 중요하게 관여하는 핵심자질을 잘 선택할수록 빠르고 정확하게 관계 추출을 수행할 수 있다. 본 논문에서는 개체 쌍 사이에 존재하는 술어-논항 구조의 어휘 패턴 문자열을 정규화해서 스트링 커널에 적용하는 관계 추출 방법을 제안한다. 제안된 시스템의 성능 평가를 위해서 과학기술문헌에 존재하는 중요한 개체들 간의 연관관계 추출 성능 평가를 수행하는 테스트컬렉션을 자체적으로 구축하였으며 실험을 통하여 제안된 방법의 성능을 측정하였다. 정확도 실험 결과, 스트링 커널의 입력으로 문장 전체를 사용한 경우에는 55.0693%, 개체 쌍 사이의 문자열을 사용한 경우에는 61.0331%, 그리고 술어-논항 구조의 어휘 패턴 문자열을 사용한 경우에는 69.14%로, 술어-논항 구조의 어휘 패턴 문자열을 사용했을 때 성능이 가장 좋게 나타났다. 결론적으로 문장 내의 술어-논항 구조를 분석하여 정규화된 어휘 패턴을 생성하고 이렇게 생성된 문자열을 스트링 커널에 적용하는 방법이 관계 추출에 유용한 방법임을 알 수 있었다.

Signal Peptide Cleavage Site Prediction Using a String Kernel with Real Exponent Metric (실수 지수 메트릭으로 구성된 스트링 커널을 이용한 신호펩티드의 절단위치 예측)

  • Chi, Sang-Mun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.786-792
    • /
    • 2009
  • A kernel in support vector machines can be described as a similarity measure between data, and this measure is used to find an optimal hyperplane that classifies patterns. It is therefore important to effectively incorporate the characteristics of data into the similarity measure. To find an optimal similarity between amino acid sequences, we propose a real exponent exponential form of the two metrices, which are derived from the evolutionary relationships of amino acids and the hydrophobicity of amino acids. We prove that the proposed metric satisfies the conditions to be a metric, and we find a relation between the proposed metric and the metrics in the string kernels which are widely used for the processing of amino acid sequences and DNA sequences. In the prediction experiments on the cleavage site of the signal peptide, the optimal metric can be found in the proposed metrics.

A Fast String Matching Scheme without using Buffer for Linux Netfilter based Internet Worm Detection (리눅스 넷필터 기반의 인터넷 웜 탐지에서 버퍼를 이용하지 않는 빠른 스트링 매칭 방법)

  • Kwak, Hu-Keun;Chung, Kyu-Sik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.821-830
    • /
    • 2006
  • As internet worms are spread out worldwide, the detection and filtering of worms becomes one of hot issues in the internet security. As one of implementation methods to detect worms, the Linux Netfilter kernel module can be used. Its basic operation for worm detection is a string matching where coming packet(s) on the network is/are compared with predefined worm signatures(patterns). A worm can appear in a packet or in two (or more) succeeding packets where some part of worm is in the first packet and its remaining part is in its succeeding packet(s). Assuming that the maximum length of a worm pattern is less than 1024 bytes, we need to perform a string matching up to two succeeding packets of 2048 bytes. To do so, Linux Netfilter keeps the previous packet in buffer and performs matching with a combined 2048 byte string of the buffered packet and current packet. As the number of concurrent connections to be handled in the worm detection system increases, the total size of buffer (memory) increases and string matching speed becomes low In this paper, to reduce the memory buffer size and get higher speed of string matching, we propose a string matching scheme without using buffer. The proposed scheme keeps the partial matching result of the previous packet with signatures and has no buffering for previous packet. The partial matching information is used to detect a worm in the two succeeding packets. We implemented the proposed scheme by modifying the Linux Netfilter. Then we compared the modified Linux Netfilter module with the original Linux Netfilter module. Experimental results show that the proposed scheme has 25% lower memory usage and 54% higher speed compared to the original scheme.

QoS Implementation on a Clustering Web Server (클러스트링 웹서버에서의 QoS 구현에 관한 연구)

  • Park, Jong-Gyu;Lee, Do-Young;Chang, Whie;Kim, Hag-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2980-2982
    • /
    • 2000
  • 본 연구에서는 리눅스 기반의 클러스터링 웹서버를 구성하고, 이 클러스터링 웹서버를 하나의 서버인 것처럼 관리하는 개발툴을 만들었다. 그리고 커널 패치를 통하여 로드밸런서가 다양한 시스템 정보를 밸런싱에 이용하도록 하였다. 각 리얼서버에는 응답 데이터의 양 혹은 각 패킷의 길이에 따라 전송의 순서를 결정하는 QoS를 구현하였다.

  • PDF

Ontology Alignment based on Parse Tree Kernel usig Structural and Semantic Information (구조 및 의미 정보를 활용한 파스 트리 커널 기반의 온톨로지 정렬 방법)

  • Son, Jeong-Woo;Park, Seong-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • The ontology alignment has two kinds of major problems. First, the features used for ontology alignment are usually defined by experts, but it is highly possible for some critical features to be excluded from the feature set. Second, the semantic and the structural similarities are usually computed independently, and then they are combined in an ad-hoc way where the weights are determined heuristically. This paper proposes the modified parse tree kernel (MPTK) for ontology alignment. In order to compute the similarity between entities in the ontologies, a tree is adopted as a representation of an ontology. After transforming an ontology into a set of trees, their similarity is computed using MPTK without explicit enumeration of features. In computing the similarity between trees, the approximate string matching is adopted to naturally reflect not only the structural information but also the semantic information. According to a series of experiments with a standard data set, the kernel method outperforms other structural similarities such as GMO. In addition, the proposed method shows the state-of-the-art performance in the ontology alignment.

Short Text Emotion Recognition based on Complex Keywords (복합색인어 기반 단문텍스트 감정 인식 기법)

  • Han, Ki-Hyun;Lee, Sungyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.520-522
    • /
    • 2013
  • 스마트 폰의 확산으로 대화의 개념이 음성에서 텍스트로 확대 되고 있다. 방대하게 누적되고 있는 메신저의 텍스트 데이터로부터 유용한 정보들을 찾아 사용자에게 추천서비스를 제공할 수 있다. 이를 뒷받침 해주기 위해서는 텍스트 감정 인식이 중요하다. 기존에는 PMI기법과 감정키워드를 이용하여 감정을 분류 하였다. 그러나 특정단어로 감정을 분류하기 때문에 정확도가 낮았다. 본 논문에서는 복합색인어 기반 텍스트 감정 인식 기법을 제안한다. 문장에서 동사와 복합색인어를 추출하여 음운으로 분해한다. 그리고 스트링커널에서 벡터 값을 추출하여 기계학습 알고리즘(SVM)으로 4가지 감정(행복, 슬픔. 화남, 평범)으로 분류하는 방법이다. 동사와 감정에 영향을 주는 색인어를 추출하여 감정을 인식하는 기법으로 실험결과 정확도는 기존에 동사만 사용했을 때 보다 15%향상됨을 보였다.