• 제목/요약/키워드: 스트럿 거동

Search Result 63, Processing Time 0.032 seconds

3-D Behavior and Strut-and-Tie Model Analysis of Diaphragm in PSC Train Bridge (PSC철도교량 격벽부의 3차원 거동 및 스트럿-타이 모델 해석)

  • 송하원;변근주;김형운;김영훈
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.564-571
    • /
    • 1998
  • The function of diaphragms at abutments and piers of prestressed concrete (PSC) box girder train bridge is to transfer forces from the superstructure onto bearings or column and to stiffen the superstructure cross-section against in-plane deformation. Due to large stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than designs for other structual members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from behavior of the deck slab obtained from two dimensional analysis of the bridge, which is basis far the design of deck slab. In this paper, three dimensional behavior of deck slab near diaphragm of PSC box girder train bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling. Then, strut-and-tie model is applied to design the diaphragm of PSC box girder train bridge. The modeling techniques in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

A Study on the Shear Fatigue Damage Behavior of the Reinforced Concrete Beams Subject to Repeated Loading Using the Strut-Tie Model (스트럿-타일 모델을 이용한 반복하중을 받는 철근 콘크리트 보의 전단피로손상거동에 관한 연구)

  • Oh, Byung-Hwan;Han, Seung-Hwan;You, Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.430-435
    • /
    • 1997
  • This paper represents the investigation of the shear fatigue behavior and damage procedure of reinforced concrete beams subject to repeated loading using the strut-tie model. Damage Index is defined as the ratio of deflection at each cycle to the ultimate deflection of inelastic region. Two types of strut-tie model are designed according to the inclined angles of concrete-struts and the consideration of concrete-ties. In one model, aggregate interlock and resistance of uncracked concrete are regarded as the main sheat resisting mechanism and in the other, stirrup is. The results show that the strut-tie model combined with damage index can describe the shear fatigue behavior of RC beams subject to repeated loading effectively.

  • PDF

Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams (고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가)

  • Lee, Woo-Jin;Yoon, Seung-Joe;Kim, Seong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.689-696
    • /
    • 2003
  • Recently, Appendix A of ACI 318∼02 Code introduced the Strut-and-Tie Model(STM) procedure in shear design of deep flexural members. The STM procedure is widely used in the design of concrete regions where the distribution of longitudinal strains is significantly nonlinear, such as deep beams, beams with large openings, corbels, and dapped-end beams. Experimental study included five high-strength reinforced concrete deep beams with different detailing schemes for the horizontal and vertical reinforcement. The specimens were designed as simply supported beams subjected to concentrated loads on the top face and supported on the bottom face. At failure, all specimen exhibited primary diagonal crack running from the support region to the point load. Specimens which had mechanical anchorages(terminators) gives better representation of the load-carrying mechanism than the specimen had standard 90-degree anchorage at failure in deep flexural members. Based on the test results, shear design procedures contained in the ACI 318-99 Code, Appendix A of the ACI 318-02 Code, CSA A23.3-94 Code and CIRIA Guide-2 were evaluated. The Shear design of ACI 318-99 Code, Appendix A of the ACI 318-02 Code and CIRIA Guide-2 shown to be conservative predictions from 10% to 36% in the shear strength of the single-span deep beam which was tested. ACI 318-99 Code was the lowest standard deviation.

Seismic Performance of Concrete Masonry Unit (CMU) Infills in Reinforced Concrete Moment Framing System (철근콘크리트 모멘트 골조시스템에서 조적 끼움벽의 내진성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The masonry infill walls are one of the most popular components that are used for dividing and arranging spaces in building construction. In spite of the fact that the masonry infills have many advantages, the system needs to be used with caution when the earthquake load is to be considered. The infills tend to develop diagonal compression struts during earthquake and increase the demand in surrounding RC frames. If there are openings in the infill walls, the loading path gets even complicated and the engineering judgements are required for designing the system. In this study, a masonry infill system was investigated through finite element analysis (FEA) and the results were compared with the current design standard, ASCE 41. It is noted that the equivalent width of the compression strut estimated by ASCE 41 could be 32% less than that using detailed FEA. The global load resisting capacity was also estimated by 28% less when ASCE 41 was used compare to the FEA case. Rather than using expensive FEA, the adapting ASCE 41 for the analysis and design of the masonry infills with openings would provide a good estimation by about 25% conservatively.

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측)

  • Park, Jung Woong;Kim, Tae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.841-848
    • /
    • 2006
  • There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

A Study on Behavior for Anchorage Zone in Prestressed Double T Beam Using Strut-Tie Model (스트럿-타이 모델을 이용한 프리스트레스트 더블 T형 보의 정착부 거동 연구)

  • 김종욱;이두성;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.425-430
    • /
    • 2002
  • This thesis is a study on behavior for anchorage zone in prestressed double T beam using strut-tie model. Stress conditions of Anchorage zone in prestressed double T beam are very disturbed because large concentrated forces act on relatively small areas. Hence, anchorage zone must be considered in Design of prestressed double T beam. If irrational design or irrational construction be conducted, that may lose stability in capacity as structure. In current design practice, certain parts of structure are designed with extreme accuracy, while anchorage zone in prestressed double T beam is designed using common sense, and experience. Therefore, it is generally very conservative. For that reason, logical, reasonable concept and accuracies are desired at design of anchorage zone in prestressed double T beam. Strut-tie method satisfies those desires. In this thesis, anchorage zone in prestressed double T beam is analyzed by considering prestressing forces. Strut-tie model is constructed based on principle stress trajectory obtained from 3D-finite element analysis in anchorage zone, and amounts of reinforcement be obtained. Results of analysis are compared with the way used in current design practice, and this thesis presents that strut-tie model can be an economical design than current design methods without losing the degree of safety.

  • PDF

A Study for Efficient Behavior of Beam-column Joint Structure Using Material Convergence Section Stage and a Temporary Boundary Condition by Strut (재료 융합 단계와 임시 스트럿의 경계조건을 이용한 기둥-보 강결 구조물의 효율적인 거동 연구)

  • Cho, Jae-Hyeung;Song, Jae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.361-374
    • /
    • 2020
  • Recently, small and medium-sized rahmen-type bridges have been developed as a technology that ensures the stability of structural behavior and the safety of use at the same time by using efficient and economical materials that make up the convergence section of reinforced bar, structural steel and concrete. This study is about a rahmen-type structure applied with the installation and dismantling of the strut. It improves the serviceability of the structure by forming multi-points and efficiently applies the convergence section of structural steel and concrete materials to the structural system changes to induce the displacement improvement effect additionally. By constructing mock-up models for the beam-column joint, the displacement was calculated and compared, and this was compared and analyzed by numerical analysis. The final displacement showed an improvement effect of 13.46% to 36.28% based on the vertical displacement of the existing structure without struts through the experiment of the mock-up models. As a result of analysis by numerical analysis method, the displacement improvement effect of 42.89% could be derived.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Capacity Development of Existing Frame by Aramid Sheet and Energy Dissipation Device (아라미드 시트와 에너지 소산 장치에 의한 기존 골조의 능력 향상)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • In this paper, the strengthening method was proposed for improving the seismic performance of the vulnerable structural frames. To improve the brittle characteristics of columns, aramid fiber sheet was used for the lateral confinement of columns. And to introduce the energy dissipation capacity, a steel damper with S-shaped struts was installed. By making the unreinforced and reinforced specimens with full size specimens were evaluated for lateral load resistance capacity. It was confirmed the strengthening effects by the evaluation of failure shape, strength, stiffness degradation, and energy dissipation capacity. Also from the FE analysis using ABAQUS, the hysteretic behavior of the specimens were predicted and evaluated.