• Title/Summary/Keyword: 스킵 포인팅 모델

Search Result 1, Processing Time 0.015 seconds

Pointer Networks based on Skip Pointing Model (스킵 포인팅 모델 기반 포인터 네트워크)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.625-631
    • /
    • 2016
  • Pointer Networks is a model which generates an output sequence with elements that correspond to an input sequence, based on the attention mechanism. A time complexity of the pointer networks is $O(N^2)$ resulting in longer decoding time of the model. This is because the model calculates attention for each input, if size of the input sequence is N. In this paper, we propose the pointer networks based on skip pointing model, which confirms the necessary input vector at decoding for reducing the decoding time of the pointer networks. Furthermore, experiments were conducted for the pronouns coreference resolution, which uses the method proposed in this paper. Our results show that the processing time per sentence was approximately 1.15 times faster, and the MUC F1 was 83.60%; this was approximately 2.17% improvement and a better performance than the original pointer networks.