• 제목/요약/키워드: 스퀼

검색결과 95건 처리시간 0.02초

자동차용 와이퍼 블레이드의 스퀼소음 저감 (Squeal Noise Reduction of an Automobile Wiper Blade)

  • 홍준기;원홍인;김형래;윤민재;정진태
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.374-380
    • /
    • 2014
  • This article proposes a design guideline to reduce squeal noise generated by an automobile wiper blade. In order to explain the squeal noise phenomenon, a source of squeal noise is experimentally investigated using a rotating disk equipment, and then a single-degree-of-freedom stick-slip vibration model is established for a blade tip. Based on analytical results, we discuss a tendency of the squeal noise for various physical parameters.

브레이크 스퀼 해석에서 패드 마모의 영향에 관한 연구 (The Study on the Influence of Pad Wear on Brake Squeal Analysis)

  • 이호건;손민혁;서영욱;부광석;김흥섭
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.930-936
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

KTX 제동장치의 고유진동수와 스퀼소음 분석 (Analysis of Natural Frequencies and Squeal Noise of KTX Brake Unit)

  • 구병춘;나인균
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.954-961
    • /
    • 2014
  • Brake squeal noise of KTX is very uncomfortable to passengers and workers in stations. A lot of study has been conducted to inquire into the mechanism of the squeal noise. But understanding of the brake squeal noise is still challenging. In this study, we developed a full-scale tester equipped with a KTX mechanical brake unit. And we measured the vibrational characteristics of each component of the brake unit and compared them with frequency response functions of brake squeal noise measured also in the tester. It was found that the brake squeal noise was more closely related to the vibrational characteristics of the brake pads and hangers in friction condition than those of free components.

저소음 브레이크 설계를 위한 스퀼 노이즈 해석기법 연구 (A Study on the Analysis of Squeal Noise for Brake Design)

  • 권성진;김찬중;이봉현;나병철;김현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.320-325
    • /
    • 2006
  • The phenomenon of squeal in disc brakes has been, and stin is, a problem for the automotive industry. Extensive research has been done in an attempt to understand the mechanisms that cause it and in developing design procedures to reduce it to make vehicles more comfortable. In this paper, the study on squeal noise of disc brake is performed using complex eigen-value analysis, The first part describes the chassis-dynamometer and the testing procedure, and second part explains how the analysis is performed and shows some of the results from typical squeal tests. Finally, to reduce squeal nose of disc brake is investigated by the effects of brake design parameter.

  • PDF

유한 요소법을 이용한 디스크 브레이크 스퀼 소음 해석 (A Study of the Squeal Noise of a Disc Brake System Using FEM)

  • 최형길;정지덕;강호원;이장무;정인승;박춘기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.630-634
    • /
    • 2001
  • Predicting brake squeal noise in design stage can be beneficial to reducing the expense of development. In this paper, the possibility of pre-estimating squeal phenomena of a disc brake system was investigated. To preestimate squeal phenomena, complex eigenvalue analysis was performed for brake system. The evaluation of noise dynamometer test verified the prediction and it corresponded with the result of complex eigenvalue analysis.

  • PDF

캘리퍼 브레이크 스퀼 소음의 불안정성 해석에 관한 연구 (A Study on the Squeal Noise Instability Analysis on Caliper Brake)

  • 이정환;김성환
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.957-965
    • /
    • 2013
  • This paper deals with analytical methods for low frequency and high frequency brake squeal noise on brake-rear caliper. In order to improve low frequency and high frequency squeal noise, we take survey caliper bracket shape parameters and housing shape parameters. Besides, using the combination of bracket and housing parameter were surveyed. Thus, using the combination of bracket Alt_05 and housing Alt_45 specifications, instability analysis and brake dynamo test were carried out. Based upon the two models, low and high frequency squeal noise of base model were improved. But, for 6.0 kHz frequency noise, which is not improved, it needs to additionally study on instability analysis and combination of the other brake components.

드럼 브레이크의 스퀼 소음에 관한 연구 (A Study on the Squeal Noise of Drum Brakes)

  • 이장무;김종현;유성우;안창기
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.111-116
    • /
    • 1998
  • The squeal of drum brakes was investigated numerically and experimentally. Modal testings were performed for shoes, drums, backing plates and their assemblies. In order to predict the squeal phenomena, stability analysis was performed based on a simplified self-excited vibration model. Based on modal testings, the dynamic properties of the brake elements and the parameters used in this analysis were determined. The geometries of shoes and drums were also considered. The result shows that the modification methods of the shoe and the drum design are feasible for noise reduction.

  • PDF

캘리퍼 모드에 의한 디스크 브레이크 스퀼 시험 및 해석 (Numerical and Experimental Analysis for Disc Brake Squeal Induced by Caliper Mode)

  • 최호일;강재영;길호종
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1351-1358
    • /
    • 2014
  • 본 논문은 차량 제동 시 발생하는 소음의 원인을 해석적으로 예측하고, 본 실험실에서 제작한 브레이크 다이나모 메터를 이용하여 실험적으로 검증하였다. 압력 변화에 따른 브레이크 시스템에 대한 주파수 응답 시험 및 유한 요소 해석(FEM)을 실시하여 캘리퍼 및 디스크의 수직 모드(Out-of-plane)의 시스템 주파수를 추적하였다. 이를 제동 시 발생한 스퀼 소음의 주파수와 비교해본 결과 스퀼 주파수는 캘리퍼 및 패드의 변위를 갖는 시스템 모드임을 확인하였다. 또한 유한 요소 해석을 이용한 복소수 고유치 해석 결과 패드의 회전변위를 발생시키는 캘리퍼 모드가 음의 마찰곡선 기울기와 연동하여 불안정하게 됨을 확인하였다.