• Title/Summary/Keyword: 스캐폴드

Search Result 24, Processing Time 0.019 seconds

Decellularized Bioscaffold of Pig Organs: A Tool for Patient-specific Organogenesis Using Induced Pluripotent Stem Cells (탈세포화 기법을 이용한 돼지 바이오 스캐폴드: 환자 맞춤형 장기재생을 위한 역분화 줄기세포 동물모델)

  • Park, Kyung-Mee;Kwak, Ho-Hyun;Nam, Hyun-Suk;Park, In-Chul;Jeon, Yong-Hwan;Park, Sung-Min;Lee, Seung-Tae;Woo, Jae-Seok;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The shortage of transplantable kidneys has many efforts to regenerate bioartificial kidneys using transgenic animals and diverse kinds of scaffolds which are important tools for cell seeding. However, there are many limitations for clinical applications so far. Recently, decellularized bioscaffolds using animal organs come into spotlight because of its many superior advantages. In current study, we produced decellularized kidney bioscaffolds of pig which is an attractive animal as a clinical model for human. We decellularized pig kidneys with 1% SDS detergent solution using peristaltic pump systems for 12h. After decellularization process, the kidney bioscaffolds preserved intact 3D morphology including glomerular structure and almost DNA from pig was entirely removed. In addition, this process could preserve micro vascular network which is necessary for cell survival. Although, additional studies for recellularization and transplantation should be required, the decellular vascularized kidney bioscaffolds might have many potentials for kidney regeneration.

Regenerative Endodontic Treatment Without Discoloration of Infected Immature Permanent Teeth Using Retro MTA : Two Case Reports (치수 괴사된 미성숙 영구치에서 Retro MTA를 이용한 변색 없는 재생적 근관치료 : 증례 보고)

  • Kim, Yujeong;Kim, Seonmi;Choi, Namki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • Regenerative endodontic treatment has the potential to heal a necrotic pulp, which can affect root development in immature teeth. However, several drawbacks and unfavorable outcomes are associated with regenerative endodontic treatment, of which the most significant is coronal discoloration due to the presence of minocycline in triple antibiotic paste and mineral trioxide aggregate (MTA). To prevent tooth discoloration following pulp treatment, the modified triple antibiotics (ciprofloxacin, metronidazole, clindamycin) were used as canal disinfectants and Retro MTA, a $ZrO_2$-containing calcium aluminate cement, was used to seal the canal. Following access cavity acquisition, the canal was copiously irrigated with 2.5% sodium hypochlorite. A modified triple antibiotic paste was then applied to the canal. Once the tooth was asymptomatic (after between 3 and 8 weeks), Retro MTA was carefully placed over the blood clot or a collagen plug. Follow-up radiographs revealed normal periodontal ligament space and root development. In two cases, successful regenerative endodontic treatment of the infected immature tooth, without discoloration, was achieved with disinfection using modified triple antibiotics and Retro MTA sealing.

Nonlinear Rheological Properties of Endothelial Cell Laden-cellulose Nanofibrils Hydrogels (내피세포가 배양된 나노셀룰로오스 하이드로겔의 비선형 유변물성 분석)

  • Song, Yeeun;Kim, Min-Gyun;Yi, Hee-Gyeong;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Cellulose nanofibrils (CNF) based on wood pulp fibers are gained much attention as part of biocompatible hydrogels for biomedical applications such as tissue engineering scaffolds, biomedicine, and drug carrier. However, CNF hydrogels have relatively poor mechanical properties, impeding their applications requiring high mechanical integrity. In this work, we prepare 2,2,6,6-tetramethylipiperidin-oxyl (TEMPO) oxidated cellulose nanofibrils hydrogels mediated with metal cations, which form the metal-carboxylate coordination bonds for enhanced mechanical strength and toughness. We conduct the large amplitude oscillatory shear (LAOS) test and Live/dead cell assay for obtaining nonlinear viscoelastic parameters and cell viability, respectively. In particular, the cell proliferation and viability change depending on the type of metal salt, which also affected the rheological properties of the hydrogels.

Peroxidase Activity of Peroxidasin Affects Endothelial Cell Growth (내피 세포 성장에 영향을 미치는 PXDN의 peroxidase 활성)

  • Kyung A Ham;Seong Bin Jo;Min Ju Lee;Young Ae Joe
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • Peroxidasin (PXDN), a multidomain heme peroxidase containing extracellular matrix (ECM) motifs, as well as a catalytic domain, catalyzes the sulfilimine crosslink of collagen IV (Col IV) to reinforce Col IV scaffolds. We previously reported that PXDN is required for endothelial cell (EC) survival and growth signaling through sulfilimine crosslink-dependent matrix assembly. In this study, we examined whether peroxidase activity is required for PXDN function in ECs. First, we constructed a mutant PXDN by point mutation of two highly conserved amino acids, Q823 and D826, which are present in the active site of the peroxidase domain. After isolation of HEK293 clones highly expressing the mutant protein, conditioned medium (CM) was obtained after incubating the cells in serum-free medium for 24 hours and then analyzed by Western blot analysis under nonreducing conditions. The results revealed that the mutant PXDN formed a trimer and that it was cleaved by proprotein convertase-like wild-type (WT) PXDN. However, peroxidase activity was not detected in the CM containing the mutant PXDN, in contrast to that of WT PXDN. In addition, the sulfilimine crosslink ability of the mutant PXDN was lost. Moreover, the CM containing the mutant PXDN failed to promote the growth of PXDN-depleted ECs, unlike the CM containing WT PXDN. These results suggest that the peroxidase activity of PXDN affects EC growth by forming a sulfilimine crosslink.