• Title/Summary/Keyword: 스칼라혼합

Search Result 27, Processing Time 0.025 seconds

Analysis for Scalar Mixing Characteristics using Linear Eddy Model (Linear Eddy Model을 이용한 스칼라의 혼합특성 해석)

  • Kim, H.J.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The present study is focused on the small scale turbulent mixing processes in the scalar Held. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.

A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame (부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong;Kim, Kyung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantity the triple flame propagation velocity, Bilger presents the triple flame propagation velocity, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the flame radius of curvature and scalar dissipation rate. In the present research, there was discussion about the radius of flame curvature and scalar dissipation rate, through the numerical study. As a result, we have known that the flame propagation velocity was linear with the nozzle exit velocity and scalar dissipation rate decreases nonlinearly with the flame propagation velocity and radius of curvature of flame increases linearly. Also radius of curvature of flame decreases non-linearly with the scalar dissipation rate. Therefore, we ascertained that there was corelation among the scalar dissipation rate, radius of flame curvature and flame propagation velocity.

Hybrid Value Predictor in Wide-Issue Superscalar Processor (슈퍼스칼라 프로세서에서 명령 윈도우 크기에 따른 혼합형 값 예측기)

  • Jeon, Byoung-Chan;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • In this paper, the performance of a hybrid value predictor according to the instruction fetch rate on window size superscalar processors is evaluated. In general, the data dependency relations of instructions are increased with the number of the fetched instructions. Therefore, it is expected that the performance of a value predictor will be higher when the instruction fetch rate is increased. The performance is studied for the machine with collapsing buffer and he one with trace cache as an instruction fetch mechanism. As a result of experiment, it is showed that the performance effect of a value predictor is higher as the instruction fetch rate of instruction window size, IPC, predict rate on apply with non-tc and tc is increased.

  • PDF

Design of a Hybrid Data Value Predictor with Dynamic Classification Capability in Superscalar Processors (슈퍼스칼라 프로세서에서 동적 분류 능력을 갖는 혼합형 데이타 값 예측기의 설계)

  • Park, Hee-Ryong;Lee, Sang-Jeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.741-751
    • /
    • 2000
  • To achieve high performance by exploiting instruction level parallelism aggressively in superscalar processors, it is necessary to overcome the limitation imposed by control dependences and data dependences which prevent instructions from executing parallel. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively its data dependent instruction based on the predicted outcome. In this paper, a hybrid value prediction scheme with dynamic classification mechanism is proposed. We design a hybrid predictor by combining the last predictor, a stride predictor and a two-level predictor. The choice of a predictor for each instruction is determined by a dynamic classification mechanism. This makes each predictor utilized more efficiently than the hybrid predictor without dynamic classification mechanism. To show performance improvements of our scheme, we simulate the SPECint95 benchmark set by using execution-driven simulator. The results show that our scheme effect reduce of 45% hardware cost and 16% prediction accuracy improvements comparing with the conventional hybrid prediction scheme and two-level value prediction scheme.

  • PDF

Analysis on Turbulent Scalar Field in a Channel with Wall Injection using LES Technique (LES기법을 이용한 벽면 분출이 있는 채널 내부의 난류 유동 및 스칼라장 특성 해석)

  • Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2009
  • Large eddy simulation was conducted for flow development in a chamber with wall injection which simulates the cold flow in an idealized hybrid rocket motor. It was found that a peculiar timescale, roughly corresponding to St~0.5, resides in the flowfield resulting from the interaction between the main oxidizer and wall injected flows. However, the fact that this time characteristics is absent in the temperature field in the vicinity of the wall indicates that even a small regression rate renders the passive scalar, such as temperature, dissimilar to the velocity field. This implies that a classical approach, which assumes that constant turbulent Prandtl number, should be replaced by a more sophisticated turbulence models to accurately predict the temperature field in the hybrid motor.

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate (화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구)

  • Kim, Kyung-Ho;Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.

On Designing 4-way Superscalar Digital Signal Processor Core (4-way 수퍼 스칼라 디지털 시그널 프로세서 코어 설계)

  • 김준석;유선국;박성욱;정남훈;고우석;이근섭;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1409-1418
    • /
    • 1998
  • The recent audio CODEC(Coding/Decoding) algorithms are complex of several coding techniques, and can be divided into DSP tasks, controller tasks and mixed tasks. The traditional DSP processor has been designed for fast processing of DSP tasks only, but not for controller and mixed tasks. This paper presents a new architecture that achieves high throughput on both controller and mixed tasks of such algorithms while maintaining high performance for DSP tasks. The proposed processor, YSP-3, operates four algorithms while maintaining high performance for DSP tasks. The proposed processor, YSP-3, operates functional units (Multiplier, two ALUs, Load/Store Unit) in parallel via 4-issue super-scalar instruction structure. The performance evaluation of YSP-3 has been done through the implementation of the several DSP algorithms and the part of the AC-3 decoding algorithms.

  • PDF

Simultaneous analysis of concentration and flow fields in a stirred tank using large eddy simulation (대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1972-1979
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al. $^{(1)}$). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation of local concentration at different positions.

  • PDF