• Title/Summary/Keyword: 스카이훅

Search Result 54, Processing Time 0.021 seconds

Design and Control of Bed Stage for Patient Compartment of Ambulance Using MR Damper (MR 댐퍼를 이용한 구급차의 환자용 Bed Stage 설계 및 제어)

  • Choi, Seung-Bok;Chae, Hee Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.26-27
    • /
    • 2014
  • This paper proposes a new bed stage system for vibration attenuation in patient compartment of ambulance. The bed stage which consist of four MR dampers can isolate vibration in the vertical, rolling and pitching directions. After evaluating dynamic characteristics of MR damper, 1/4 bed stage model is formulated. The sky hook controller is then utilized for vibration control. Finally, control responses of the bed stage equipped with MR dampers are presented.

  • PDF

Hybrid Control of Active Suspension System Considering Hydraulic System Dynamics (유압계의 동특성을 고려한 능동 현가계의 합성 제어)

  • 김효준;박혁성;양현석;박영필
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 1997
  • This paper presents an active suspension control algorithm to improve the suspension performance trade-offs between riding comfort and handling stability. In this paper, a hybrid control scheme is proposed, the idea of which is that sliding mode control is used for nonlinear hydraulic system and the skyhook control is applied to control the vehicle behavior. The parameter variations in hydraulic system are considered for the robust controller design. The performance of the proposed control method is evaluated by simulation and experiments based on a half car roll model which can reveal both heave and roll behavior.

  • PDF

Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System (반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어)

  • 김대원;배준영;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

Intelligence Control Characteristics of a Digital Damper (디지털 댐퍼의 지능제어 특성)

  • Song, Joon-Ho;Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Development of Control Algorithm for Semi-active TMD using MOGA (MOGA를 이용한 준능동 TMD 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Gee-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.331-334
    • /
    • 2010
  • 본 논문에서는 준능동 TMD가 설치된 고층건물의 풍응답을 효과적으로 저감시키기 위하여 다목적 유전자알고리즘(MOGA)을 이용한 퍼지관리제어기를 개발하였다. 퍼지관리제어기는 하위제어기인 그라운드훅(groundhook) 제어알고리즘과 스카이훅(skyhook) 제어알고리즘에 의해서 결정된 제어명령을 적절하게 하나로 합치는 역할을 한다. 다목적 유전자알고리즘의 최적화 과정에서 75층의 가속도 응답과 준능동 TMD의 변위응답을 목적함수로 사용하였다. 다목적 유전자알고리즘 최적화과정을 통하여 퍼지관리제어기의 파레토 최적해집합을 효과적으로 얻을 수 있었다. 다목적 유전자알고리즘에 의하여 개발된 퍼지관리제어기는 가중합방법의 제어기보다 매우 우수한 성능을 나타내었다.

  • PDF

Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System (반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발)

  • 손영일;이종호;송병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load (200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰)

  • 정우진;정의봉;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Design and Performance Evaluation of MR Damper for the Reducing Vibration of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 진동 저감을 위한 파이프 지지용 MR댐퍼의 설계 및 성능 평가)

  • Park, Woo-Cheul;Lee, Hyun-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2100-2105
    • /
    • 2013
  • This paper presents design and performance evaluation of MR damper for the reducing vibration of a flexible pipe conveying fluid. A novel type of MR damper which is suitable for pipe vibration characteristics is proposed and the MR damper is mathematically modeled and its damping force characteristics are evaluated. The vibration control performance of the MR damper associated with The cantilever pipe system is evaluated.

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.