• 제목/요약/키워드: 스몰셀 네트워크

검색결과 12건 처리시간 0.021초

Coordinated Multi-Point Communications with Channel Selection for In-building Small-cell Networks (건물 내 스몰셀 네트워크에서 채널 선택 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • 제23권5호
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a coordinated multi-point communication (CoMP) method with channel selection to improve performance of a macro user equipment (MUE) in a dense small-cell network environment in a building located within coverage of a macro base station (MBS). In the proposed CoMP method, in order to improve the performance of the MUE located in the building, A small-cell base station (SBS) selects a channel with lower interference to the neighboring MUE and transmits appropriate signals to the MUE requiring CoMP. Simulation results show that the proposed CoMP method improves the performance of the MUE by up to 164% and 51%, respectivley, compared to a random channel allocation based traditional SBS network and CoMP method.

스몰셀 분야 특허 동향 및 추진 전략

  • Jeong, Jin-Seop
    • Information and Communications Magazine
    • /
    • 제31권10호
    • /
    • pp.80-86
    • /
    • 2014
  • 스마트 폰을 비롯한 모바일 기기들은 멀티미디어 정보를 포함하는 대용량 무선 데이터 서비스를 위해 진화하고 있다. 이에 따라 통신 서비스 제공업체의 네트워크들은 점점 더 복잡해지고 다양한 서비스를 위한 장비들로 구성되고 있다. 스몰셀 기지국(access point, Henb)들은 기존의 매크로셀과 같이 이동통신 사업자에 의해 지정된 최적의 위치에 설치되는 것이 아니고 사용자가 개별적으로 구매하여 설치하기 때문에, 셀의 배치를 위한 지역적인 설계가 없다. 따라서 스몰셀 기지국 스스로가 주변 환경을 탐지하여, 각종 파라미터를 최적으로 설정하는 것을 기본 성능으로 요구한다. 이에 따라, 과거 일정한 커버리지를 갖는 소형의 기지국 장비들을 지칭하던 펨토셀, 피코셀 등의 명칭도 현재에는 적응적인 커버리지 조절의 기능을 고려하여 스몰셀(small cell)로 통칭되고 있다. 스몰셀 기술은, 3GPP에서 스몰셀 기술이 제안되기 시작하면서 급증하고 있으며 국내외 학계와 업계가 표준을 기반으로 하는 R&D와 특허 출원을 현재에도 진행하고 있다. 각 국가들의 스몰셀 기술은 현재까지 발전기에 속하여 앞으로도 지속적인 연구개발과 표준화, 그리고 특허 출원으로 이어지는 국가간의 경쟁이 치열할 것으로 전망된다. 본 고에서는 스몰셀 표준을 통해 세부 기술을 도출하고, 이로부터 관련 특허를 검색하고 분석하여 향후 표준 특허로 확보하는 방법론을 제시한다.

Small-cell based Cooperative Multi-Point Communications to Increase Macro-cell User Performance in Ultra-Dense Heterogeneous Networks (고밀도 이기종 네트워크에서 매크로셀 사용자 성능 향샹을 위한 스몰셀 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • 제22권6호
    • /
    • pp.9-15
    • /
    • 2021
  • In ultra-dense heterogeneous networks, the amount of interference from small-cell base stations(SBS) to macro-cell user equipments (MUEs) increases significantly as the number of SBSs increases and it causes the MUEs to decrease the signal-to-interference and noise ratio(SINR) and system capacity. In this paper, we propose a small-cell based cooperative multi-point(CoMP) communication scheme that can guarantee the performance of MUEs even when the number of SBSs increases. In the proposed scheme, MUEs first find SBSs that give signal strength equal to or greater than a given SINR threshold and then they are served by different numbers of the selected SBSs using CoMP to improve the performance of MUEs. Simulation results show that the proposed small-cell based CoMP scheme outperforms other interference management or CoMP schemes in terms of the SINR and system capacity of MUEs.

ABS Ratio Estimation Considering the Number of UEs in CRE Regions for LTE-A Heterogeneous Networks (LTE-A 기반 이종 네트워크에서 CRE 영역내 단말들의 수를 고려한 ABS 비율 산출 방법)

  • Sun, Jong-Suk;Roh, Byeong-hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • 제13권5호
    • /
    • pp.104-112
    • /
    • 2017
  • The CRE (Cell Range Expansion) that selects the small cell with more efficient uplink resources has been developed by 3GPP to relieve the problem of the traffic imbalance due to the power differences between macro and small cells in HetNet. In addition, ABS (Almost Blank Subframes) has been proposed to resolve the signal interference problem due to the operation CREs. This paper proposes an effective method to calculate the ABS ratio by considering the proportion of the number of UEs in CRE and macro cell ranges, as well as the number of small cells in a macro cell. The proposed method has been implemented on the LTESim simulator, and compared with previously proposed methods. The experimental results show that the proposed method can improve the throughput and packet loss ratio performances. In particular, it is also shown that CRE bias values affect those performances, and there exist effective CRE bias values to derive the best performances.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • 제24권5호
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • 제23권5호
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

Decentralized Frequency Reuse Scheme Supporting Best-Effort Services in Downlink Small-Cell Network (하향링크 스몰셀 네트워크 환경에서 최선형 서비스를 위한 분산적인 주파수 재사용 기법)

  • Park, Seung Young;Kim, Joon Young;Kim, Dong Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38A권4호
    • /
    • pp.360-370
    • /
    • 2013
  • When best-effort traffic users are supported in a downlink small-cell network, conventional schemes assign the channels experiencing low co-channel interference at each base station and provide a better downlink performance to the user near its serving base station, so that conventional schemes are not suitable to fairly support all users. In this paper, we propose a decentralized frequency reuse scheme for a small-cell network, where each basestation chooses a set of channels to fairly support the best-effort traffic users regardless of the distances to their serving basestation. After performing the conventional scheme that each basestation selects the channels which are not used in its adjacent basestations, it updates assigned channels improving the performance of low throughput users in a fully distributed manner with mitigating the overall throughput performance loss. The computer simulation demonstrates that the average throughput performance of the 10th percentile throughput users is improved up to 15% in some case compared to that of the conventional scheme, while allowing the overall throughput loss around 3%.

A study on the Application of PB/MC-CDMA for IoT Services in Small Cell Environment (IoT 서비스를 위한 스몰셀 환경에서 PB/MC-CDMA 적용 방안에 대한 연구)

  • Lee, Kyu-Jin
    • Journal of Convergence Society for SMB
    • /
    • 제6권3호
    • /
    • pp.21-27
    • /
    • 2016
  • In this paper, we introduce the PB/MC-CDMA (Partial Block/Multi-Carrier-Code Division Multiple Access) system to mitigate inter-cell interference (ICI) and enhance user capacity in the small cell environment. In 5G mobile communications, the number of devices connected to the network is expected to increase exponentially with the expansion of the IoT (Internet of Things) services. In addition, each device is expected to be required by the various data rates by their content types. In LTE/LTE-A, there are some limitations that large scale connectivity and supporting various data rates. Therefore, we introduce a PB/MC-CDMA physical layer system which is suitable for the small cell environment, and evaluate the performance in the multi cell environment which is affected by ICI. Through computer simulation results, we demonstrate the effectiveness of PB/MC-CDMA for the small cell environment.

Incentive Optimization Scheme for Small Cell Base Station Cooperation in Heterogeneous Networks (이기종 네트워크에서 스몰셀 기지국 협력을 위한 인센티브 최적화 기법)

  • Jung, Sukwon;Kim, Taejoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • 제7권8호
    • /
    • pp.203-210
    • /
    • 2018
  • Mobile traffic is increasing consistently, and mobile carriers are becoming more and more hard to meet this ever-increasing mobile traffic demand by means of additional installation of base stations. To overcome this problem, heterogeneous networks, which can reuse space and frequency by installing small cells such as femto cells in existing macro cells, were introduced. However, existing macro cell users are difficult to increase the spectral efficiency without the cooperation of femto owners. Femto owners are also reluctant to accommodate other mobile stations in their femto stations without proper incentive. In this paper, a method of obtaining the optimal incentive is proposed, which adopts a utility function based on the logarithm of throughput of mobile stations, and the incentive is calculated to maximize the utility of the entire network.

DANCE : Small AP On/Off Algorithms in Ultra Dense Wireless Network (DANCE : 초고밀도 통신망에서의 소형기지국 온-오프 알고리즘)

  • Lee, Gilsoo;Kim, Hongseok;Kim, Young-Tae;Kim, Byoung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38A권12호
    • /
    • pp.1135-1144
    • /
    • 2013
  • Deploying small cells is a reliable and influential solution to handle the skyrocketing traffic increase in the cellular network, and the small cell technology is evolving to ultra-dense network (UDN). In this paper we propose a small cell on/off algorithm with a simple but essential framework composed of access point (AP), user equipment (UE), and small cell controller (SCC). We propose Device-Assisted Networking for Cellular grEening (DANCE) algorithms that save the energy consumption by tying to minimize the number of turned-on APs while maintaining the network throughput. In doing so, SCC firstly gathers the feedback messages from UEs and then makes a decision including a set of turned-on APs and user association. DANCE algorithm has several variations depending on the number of bits of the UE's feedback message (1 bit vs. N bit), and is divided into AP-first, UE-first, or Proximity ON according to the criteria of selecting the turned-on APs. We perform extensive simulations under the realistic UDN environment, and the results confirm that the proposed algorithms, compared to the baseline, can significantly enhance the energy efficiency, e.g., more than a factor of 10.