• 제목/요약/키워드: 스마트 홈서비스

검색결과 352건 처리시간 0.021초

기술수용모델을 활용한 지체장애인의 인공지능 스피커 사용 의도에 관한 연구 (A Study on the Use of Artificial Intelligence Speakers for the People with Physical disability using Technology Acceptance Model)

  • 박혜현;이선민
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.283-289
    • /
    • 2021
  • 4차 산업혁명에 기반하여 열린 스마트 홈 시대의 메인 허브 역할을 하는 인공지능 스피커에 많은 장애인의 관심이 모이고 있다. 그러나 인공지능 스피커를 향한 장애인의 니즈(Needs)에 비하여 현재까지 인공지능 스피커를 사용하는 장애인 사용자의 수는 매우 저조하다. 이에 본 연구는 장애 유형 중 가장 많은 수를 차지하는 지체장애인에 초점을 맞추어 지체장애인의 인공지능 스피커 사용 의도를 파악하는 것을 목적으로 하였다. 이에 따라 본 연구는 장애인의 인공지능 스피커 사용 의도에 영향을 미치는 요인을 확인하고 요인 간 인과관계를 분석하기 위하여, 최근 첨단 IT 기술의 수용과 관련하여 설명력이 높은 모형으로 알려진 기술수용모델(Technology Acceptance Model, TAM)을 활용하였다. 기술수용모델의 이론적 모델을 바탕으로 인공지능 스피커에 대한 인지된 용이성과 인지된 유용성이 장애인의 인공지능 스피커 사용 의도에 미치는 영향을 구조방정식(Structural Equation Modeling, SEM)을 이용하여 분석하였다. 연구 결과 기술수용모델은 지체장애인의 인공지능 스피커 사용 의도를 파악하기 위해 적합한 모형인 것으로 확인되었으며, 구체적으로 인공지능 스피커에 대한 인지된 용이성은 유용성에 유의미한 영향을 미치는 것으로 나타났다. 또한, 지체장애인의 인공지능 스피커에 대한 인지된 용이성은 사용 의도에 통계학적 유의미한 영향을 미치지 않는 것으로 나타났으며, 인지된 유용성은 사용 의도에 유의미한 영향을 나타내는 것으로 나타났다. 본 연구를 통해 장애인의 인공지능 스피커 사용 의도에 영향을 미치는 요인을 확인하고 요인 간 인과관계를 확인할 수 있었으며, 이는 장애인 맞춤형 인공지능 스피커 서비스 개발과 장애인의 인공지능 스피커 사용성을 향상을 위한 기초자료로써 의의가 있다.

GRU 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템 (A Fuzzy-AHP-based Movie Recommendation System using the GRU Language Model)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제19권8호
    • /
    • pp.319-325
    • /
    • 2021
  • 무선 기술의 고도화 및 이동통신 기술의 인프라가 빠르게 성장함에 따라 AI 기반 플랫폼을 적용한 시스템이 사용자의 주목을 받고 있다. 특히 사용자의 취향이나 관심사 등을 이해하고, 선호하는 아이템을 추천해주는 시스템은 고도화된 전자상거래 맞춤형 서비스 및 스마트 홈 등에 적용되고 있다. 그러나 이러한 추천 시스템은 다양한 사용자들의 취향이나 관심사 등에 대한 선호도를 실시간으로 반영하기 어렵다는 문제가 있다. 본 연구에서는 이러한 문제를 해소하기 위해 GRU(Gated Recurrent Unit) 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 취향이나 관심사를 실시간으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 또한 대중들의 관심사 및 해당 영화의 내용을 분석하여 사용자가 선호하는 요인과 유사한 영화를 추천하기 위해 GRU 언어 모델 기반의 모델을 적용하였다. 본 추천 시스템의 성능을 검증하기 위해 학습 모듈에서 사용된 스크래핑 데이터를 이용하여 학습 모델의 적합성을 측정하였으며, LSTM(Long Short-Term Memory) 언어 모델과 Epoch 당 학습 시간을 비교하여 학습 수행 속도를 측정하였다. 그 결과 본 연구의 학습 모델의 평균 교차 검증 지수가 94.8%로 적합하다는 것을 알 수 있었으며, 학습 수행 속도가 LSTM 언어 모델보다 우수함을 확인할 수 있었다.