학점은행제는 평생학습사회를 구현하기 위한 교육 시스템이다. 이 시스템의 조건을 충족한 학습자는 전문대, 4년제 대학교의 학위와 동등한 학사 학위를 취득할 수 있다. 이 학습자의 학점과 학위 정보는 중앙 기관에 기록되어 관리되고 있다. 그러나 이러한 시스템은 중앙관리로 인해 해킹 등과 같은 보안 문제가 발생할 수 있다. 본 논문에서는 블록체인 기술을 기반으로 학점과 학위 정보를 관리할 수 있는 학점은행제 시스템을 제안한다. 제안된 시스템은 학점과 학위 정보는 블록에 저장되고 영구적인 방식으로 공개 원장에 기록된다. 블록들은 해킹과 조작 등의 보안 문제를 개선하기 위해 분산 네트워크 환경에서 블록체인 형식으로 연결되어진다. 또한 중앙 기관의 기능들이 네트워크 참여자들에게 분산되기 때문에 학점 은행 관리의 효율성이 증대될 수 있다. 제안된 시스템의 프로토타입은 Go-Ethereum 플랫폼에서 구현되었으며 스마트 컨트랙트를 사용하여 참여기관 간의 블록체인 정보를 실험적으로 검증하였다.
최근 사물인터넷은 인공지능의 발전, 연결된 기기의 증가와 클라우드 시스템의 높은 성능으로 인해 급격하게 발전하고 있다. 많은 기기와 센서로부터 생산되는 엄청난 양의 데이터들은 지능적 진단, 추천 서비스 뿐 아니라 스마트 관제 서비스와 같이 서비스 영역의 확대를 이끌고 있다. 엣지 컴퓨팅(Edge Computing)에 대한 연구는 높은 성능을 지닌 하드웨어를 바탕으로 작은 또 하나의 서버로써의 역할에 국한되어 연구되고 있다. 그러나 데이터를 분석하고 의미성에 따른 서비스를 구현하기 위해서는 범용적 서버로써의 역할보다는 도메인에 특화된 기능과 요구사항을 지녀야 한다. 스마트 팩토리에서의 엣지는 제한적 필터링, 사전 포맷팅을 포함하는 전처리와 그룹 컨텍스트 융합, 지역적 룰의 관리 등을 필요로 한다. 따라서 본 논문에서는 공장 특성에 맞는 효율성과 강건함 측면을 강조하는 요구사항들을 도출하고, 클라우드와 학습된 요소 공유 방법을 기반으로 하는 엣지 컴퓨팅의 구조를 제안하고자 한다. 이 엣지는 네트워크 자원 소모를 감소시키고 룰과 학습화된 모델의 변경을 쉽게 할 수 있도록 한다.
소셜러닝은 소셜미디어의 단순한 교육적 활용에서 나아가, '학습자의 참여가 증진되고 동료학습자간의 의사소통과 의견 공유가 주된 학습 활동으로 부각되며, 학습자와 교수자간의 활발한 상호작용에 의하여 학습의 내용이 적응적으로 제공되는 학습' 이다. 본 연구에서는 소셜미디어의 특징과 소셜러닝에 대한 개념 이해를 바탕으로, 소셜러닝 교육과정을 기획, 설계, 개발하고, 실제 직업교육 현장에 적용한 후 그 성과를 분석하였다. 302명이 입과하여 138명이 수료를 한 '유통혁신을 위한 POP 및 품목별 진열기법'을 다룬 소셜러닝 시범운영은 시간흐름에 따른 콘텐츠 제시방식, 진행형 콘텐츠와 학습자간 활발한 상호작용을 지원하는 플랫폼 개발, 소형 스마트 기기에 의한 효과적 직무교육 지원체제가, 핵심적 특징으로 적용되었다. 본 연구에서는 학습관리시스템에 남겨진 로그데이터를 통한 학습행태 분석, 온라인 활동과 과제로 구성된 평가결과 및 수료율 분석, 설문조사를 통한 학습자 특성 및 만족도 분석이 실시되었다. 종합적 분석에 의하여 소셜러닝의 개선사항과 향후 발전방향을 제언하였다.
Contemporary University students are considered the Z generation who were born after 1995. They are more tech savvy than millennials. To target the generation, traditional class management platforms have evolved to smart LMS that is more customized and accessible for smart devices. Global level information search and collaboration can also be implemented using such smart LMS. However, switching from one LMS to another LMS requires great effort from teachers and support from staffs. This study measured the learners' perception of the system when they were exposed to a new smart-LMS. Blackboard Learn Ultra was used for 15 weeks and at the end of the semester, a questionnaire was administered to the students of these classes. Results indicated that experience with previous LMS discouraged students from adopting Blackboard Learn. Result of TAM modeling indicated that perceived usefulness, compared to perceived ease of use and attitude, was an effective aspect to bring positive acceptance of the system. A qualitative approach and network analysis were also conducted based on students' responses. Both positive and negative responses were detected. Inconvenience due to mechanical aspects was mentioned. Dissatisfaction compared to previous local LMS use was also mentioned. Mobile application and communication effectiveness were positive aspects. Revised course development and promoting how useful the system may help enhance the acceptance of the new system.
최근 지구온난화 및 이상기후 현상으로 인하여 집중호우의 빈도와 강도가 급증하고 있다. 그리고 급격한 도시화로 불투수 면적이 증가하여 도시지역에 침수피해가 빈번하게 발생하고 있는 실정이다. 이러한 침수피해를 방지하기 위하여 침수위험지구, 재해위험지구를 선정하여 집중호우에 대하여 집중관리를 하고 있지만 위험지구이외의 곳에서 침수가 발생할 경우 신속하게 대처하지 못하는 문제가 발생하고 있다. 또한, 하천이 범람하여 발생하는 외수침수의 경우 수위를 실시간으로 확인할 수 있어 미리 대응이 가능하지만, 내수침수의 경우 지하에 매설되어 있는 관로의 상태를 확인할 수 없기 때문에 순간적으로 발생하는 침수에 대하여 신속하게 대처를 해야 한다. 현재 침수 피해를 신속하게 대처하기 위하여 CCTV를 활용해 침수의 발생여부를 모니터링 하고 있지만 CCTV설치 지역에 비하여 적은 인력으로 모든 CCTV를 확인하지 못하여 침수피해를 신속하게 대처하지 못하고 있는 실정이다. 본 연구에서는 침수사진 자료를 CNN(Convolutional Neural Network)기법을 이용하여 학습시켜 침수의 발생여부를 판단하는 모델을 제안하였다. 딥러닝 기법의 CNN은 이미지의 특징을 추출하여 학습하는 과정을 가지게 되는데 학습이 완료된 모델은 침수사진의 특징을 파악하여 침수가 발생하였는지에 대한 여부를 자동적으로 판단하게 된다. 본 연구결과를 CCTV관재센터 혹은 지자체와의 연계를 통하여 침수의 발생여부를 자동적으로 판단해주는 시스템이 개발된다면 신속한 침수피해 대처가 이루어 질 수 있을 것이라 판단된다.
ICT 기술이 발전함에 따라 다양한 분야에서 사물 인터넷을 활용한 서비스들이 구현되고 있다. 그중에서 비콘을 이용한 위치기반서비스(Location-Based Service)는 산업분야에서 활용성이 높다. 스마트 팩토리에서 비콘을 제품이나 박스에 부착하여 통합 물류관리를 시스템을 구축하고, 병원에서는 환자의 상태 혹은 위치를 모니터링하기 위해 비콘을 활용한다. 위치기반서비스를 구현하기에 있어 비콘의 위치를 파악하는 기술이 선행되어야 하고 본 논문에서는 신경망 학습(Neural Network)을 활용하여 RSSI(Received Signal Strength Indication) 기반 비콘의 위치를 추론하는 기법에 대해서 연구한다. 신경망 학습결과 94.89%의 위치 정밀도를 보였다.
현재 앱의 대부분은 게임과 엔터테인먼트 분야에 편중되어 있고 교육용 앱은 시장 비율이 매우 낮다. 이런 현상은 크게 두 가지 문제점으로 인해 발생한다. 첫 번째는 단순한 패턴의 문제 풀이로 인한 재사용 빈도의 하락이며, 두 번째는 학습한 영역의 사용자 수준을 고려한 학습 관리가 어렵다는 것이다. 본 논문은 스마트폰 환경에서 앞서 언급한 문제점을 해결하기 위한 지능형 맞춤 교육 앱을 제안하고 구현 결과를 제시한다. 시스템은 학습 결과를 분석하여 취약 영역을 판단한다. 취약 영역의 경우 가중치를 통해 다음번 제공되는 문제 수가 증가한다. 아울러 시간 개념을 도입한 재검증 모듈은 학습자의 장기기억을 돕는다. 이와 같이 제안하는 시스템은 자기 주도적 학습을 직접적으로 지원 한다. 따라서 학습자는 자기 주도적 학습을 수행함에 있어 학습에 더욱 많은 노력을 기울일 수 있다.
지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.
본 연구에서는 새로운 교사도우미 로봇에 초점을 맞추어 클라우드 기반의 교육서비스 모델을 연구하여 서버영역에 적용하고, 클라이언트 영역에서는 교사도우미 로봇을 초등학교 교실환경에 적용하여 어학교육 서비스 플랫폼으로 활용하고자 한다. 새로운 사물인터넷(IoT)기술 접목을 통해 쾌적한 스마트 교실환경을 만들고 다양한 미디어에 대한 인터페이스를 지원하도록 한다. 이러한 목적의 달성을 위해 광범위한 선행연구와 사례분석을 통해서 서비스 모델구축에 필요한 기본적인 요구조건을 정리하였다. 임베디드 기반의 영상인식, 음성인식, 자율주행은 물론 디스플레이, 터치스크린, IR센서, GPS, 온습도 센서에 대한 기술을 광범위하게 적용하여 서비스를 완성하도록 한다. 본 연구결과의 가장 핵심적인 시사점은 클라우드 기술을 활용한 최적화된 플랫폼에 로봇러닝 및 IoT, BIM기술 융합을 통한 지능형로봇기반의 스마트 교실구축 가능성 제시에 있다고 본다.
현재 스마트폰의 급격한 보급과 IoT을 대상으로 활성화로 인해 소셜네트워크 서비스를 이용하여 악성코드를 유포하거나 지능화된 APT와 랜섬웨어 등과 같은 지능적인 침입이 진행되고 있고 이로 인한 피해도 이전의 침입보다는 많이 심각해지고 커지고 있는 실정이다. 따라서 본 논문에서는 이런 지능적인 악성 코드로 이루어지는 침입행위를 탐지하기 위하여 지능적인 침입 상황 인식 추론 시스템을 제안하고, 제안한 시스템을 이용하여 지능적으로 진행되는 다양한 침입 행위를 조기에 탐지하고 대응하게 하였다. 제안 시스템은 이벤트 모니터와 이벤트 관리기, 상황 관리기, 대응 관리기, 데이터베이스로 구성되어 있으며 각 구성 요소들 사이에 긴밀한 상호 작용을 통해 기존에 인식하고 있는 침입 행위를 탐지하게 하고 새로운 침입 행위에 대해서는 학습을 통해 추론 엔진의 성능을 개선하는 기능을 통하여 탐지하게 하였다. 또한, 지능적인 침입 유형인 랜섬웨어를 탐지하는 시나리오 통하여 제안 시스템이 지능적인 침입을 탐지하고 대응함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.