• 제목/요약/키워드: 스마트 클러스터

검색결과 64건 처리시간 0.023초

빅데이터 분석을 이용한 이러닝 수강 후기 분석 (e-Learning Course Reviews Analysis based on Big Data Analytics)

  • 김장영;박은혜
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.423-428
    • /
    • 2017
  • 인터넷과 스마트 기기의 사용량 증가로 인해 다양한 교육정보와 많은 양의 데이터가 생성되어 빠르게 확산되고 있다. 최근 이러닝 이용률이 증가하면서 발생하는 빅데이터를 활용하여 학습자들의 교육 성과와 교육 시스템의 효과성을 극대화 하는 것을 목표로 하는 교육 데이터 관련 연구 분야에 대한 관심이 높아지고 있으며 온라인에서 학습자들이 학습한 수많은 기록과 데이터들이 정보로 쌓이게 된다. 이에 본 논문에서는 이러닝 학습자들이 시스템에 남긴 수강 기록을 기반으로 학습자 현황에 대해 객관적으로 파악할 수 있도록 신경망 알고리즘인 Word2Vec을 적용하여 단어 간 유사도를 구하고 클러스터링 알고리즘을 이용하여 군집화 하였다. Word2vec을 이용하여 학습을 시키면 연관된 의미의 단어가 나타나게 되고 학습을 반복해 나가는 과정에서 점차 가까운 벡터를 지니게 된다. 또한 클러스터 알고리즘을 이용하여 명사, 동사, 형용사, 부사가 중심점에서 최소의 거리를 두고 같은 거리에 위치해 있음을 실험 검증하였다.

클러스터링 기법을 활용한 출발 여객 체류 시간 분석 (Analysis of Departing Passengers' Dwell Time using Clustering Techniques)

  • 안덕배;김휘양;백호종
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.380-385
    • /
    • 2019
  • 본 연구는 실제 공항에서 수집되는 여객 데이터를 활용하여 공항 내 여객의 체류 시간을 분석한 연구이다. 여객의 체류 시간은 공항 터미널 설계, 공항의 수익성에 영향을 주어 중요한 여객 특성으로 간주되어 왔지만 실제 여객 데이터 수집의 어려움으로 그에 대한 분석이나 실시간 공항 운영에 활용하기가 어려웠다. 하지만 스마트 공항의 일환으로 세계 유수의 공항에서 방대한 양의 여객 데이터를 수집하고 있고, 축적된 데이터를 활용하여 공항 내 여객 체류 시간 분석이 가능해졌다. 본 연구에서는 인천 국제 공항에서 수집된 여객 데이터를 활용하여 여객 체류 시간 분석을 수행하였으며, 방대한 양의 자료를 효율적으로 처리하기 위해 데이터 마이닝 기법인 클러스터링을 활용하여 여객을 체류 시간에 따라 구분하였다. 분석 결과 인천 국제 공항 출발 여객은 체류 시간에 따라 1) 체류 시간이 짧고 대부분의 시간을 에어사이드에서 보내는 여객, 2) 평균 3 시간 정도의 체류 시간을 갖는 여객, 3) 총 체류 시간이 압도적으로 긴 여객 등 크게 3 개의 클러스터로 구분할 수 있는 것으로 나타났다.

Bass Diffusion 모델을 활용한 스마트폰 시장의 성장 규모 예측: 몽골 사례 (Forecasting the Growth of Smartphone Market in Mongolia Using Bass Diffusion Model)

  • ;신광섭
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.193-212
    • /
    • 2022
  • 1969년에 처음 고안되어 확산에 대한 마케팅 연구를 이끈 Bass Diffusion Model은 일반적으로 마케팅 연구 및 경영 과학에서 가장 성공적인 모델 중 하나다. 본 연구는 휴대전화 가입 확산을 토대로 Bass 확산 모델의 사용을 설명하며 Bass 확산 모델을 3대 선진국 시장인 한국, 일본, 중국과 신흥시장인 베트남, 태국, 카자흐스탄, 몽골에 적용했다. 실험에서는 비선형 최소자승법을 사용하여 Bass확산 모델의 매개변수를 추정하였고 휴대전화 가입의 확산은 모든 경우에 S 곡선을 따른다. m, p 및 q 매개변수를 획득한 후 국가를 세 그룹으로 그룹화하기 위해 k-평균 클러스터 분석을 사용했으며 국가를 클러스터링함으로써 확산 속도와 패턴이 유사하며 신흥시장이 있는 국가가 선진국의 발자취를 따를 수 있음을 제안한다. 연구의 목적은 시장 성숙도의 시기와 규모를 예측하고 데이터가 Bass 모델의 혁신의 일반적인 확산 곡선을 따르는지 여부를 판단하는 것이다.

공간 빅데이터와 야간 위성영상을 활용한 도시 활력 평가: 대구시를 사례로 (Urban Vitality Assessment Using Spatial Big Data and Nighttime Light Satellite Image: A Case Study of Daegu)

  • 정시윤;전병운
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.217-233
    • /
    • 2020
  • 본 연구는 공간 빅데이터, 공공 Wi-Fi AP와 야간 위성영상과 같은 새로운 지리 데이터를 활용하여 2018년 대구광역시의 도시 활력을 평가하였다. 새로운 지리 데이터는 다양한 시공간 스케일에서 도시민의 활동을 보다 직접적으로 파악하기 위하여 본 연구에서 사용되었다. 이동전화 데이터, 대중교통 스마트카드 데이터, 신용카드 데이터와 같은 세 가지 공간 빅데이터가 도시 활력의 사회적, 경제적 및 모빌리티 측면을 반영하기 위하여 사용되었다. 반면에, 공중 Wi-Fi AP와 야간 위성영상은 도시 활력의 가상적 및 물리적 측면을 고려하기 위하여 사용되었다. 다섯 개의 도시활력 지표들은 주성분 분석을 통해 통합되어 네 개의 시간대에서 집계구별 도시 활력 지수로 변환 되었다. 연구 결과에 의하면, 높은 도시 활력을 가진 다섯 개의 클러스터가 대구 도심, 대구은행 네거리와 범어역 네거리, 성서, 동대구역, 칠곡 3지구 주변에서 확인되었다. 또한, 도시 활력 지수는 같은 도시 공간상에서도 시간대별로 변한다는 것이 밝혀졌다. 본 연구는 도시 활력을 측정하기 위한 대리변수로 공간 빅데이터, 공공 Wi-Fi AP, 야간 위성영상을 통합하여 활용할 수 있는 가능성을 제시한다.