• Title/Summary/Keyword: 스마트 에너지

Search Result 944, Processing Time 0.021 seconds

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.

A Study on Selection of an Overhead Electrical Transmission Line Corridor with Social Conflict (사회적 갈등을 갖는 송전선로 경과지 선정에 관한 연구)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Hak-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.577-584
    • /
    • 2021
  • Electrical energy is an essential component in present societies, which is an important basis for our technological society. In the design of new power infrastructure, it is important to consider the psychological aspects of how our culture considers and aspects its development as an integral component of the community environment. The construction of new high voltage overhead transmission lines has become a controversial issue for public policy of government due to social opposition. The members of community are concerned about how these power lines may have an impact on their lives, basically caused by their effects on health and safety. The landscape and visual impact is one of the most impact that can be easily perceived for local community. The computer 3D simulation of new landscape is illustrated by a real life use corresponding to the selection of the power line route with least observability for local community. This paper used ArcGIS(geographic information system tool) for planning, survey, basic route and detailed route, route for implementation of transmission line corridor. Also, the paper showed the map of natural environment, living environment, safety and altitude using database of power line corridor, and transmission siting model was developed by this study. The suggested landscape of computer simulation with lowest visibility on a power line zone can contribute to reducing oppositions of local community and accelerating the construction of new power lines.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

Application of the Proper Air Supply Amount Based on the Influent Water Quality for the Development of Efficient Blower Control Logic in Sewage Treatment Plants (하수처리장의 효율적인 Blower Control Logic 개발을 위한 유입수질 기반 공기공급량 적용 연구)

  • Yeo, Wooseok;Kim, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • The standards pertaining to the quality of discharged water in sewage treatment plants are strengthening, and accordingly, facilities in sewage treatment plants are being upgraded. In addition, the discharge water quality of sewage treatment plants must be maintained at a high level, and efficient sewage treatment plant operations have thus emerged as a very important issue. For the efficient operation of sewage treatment plants, this study applied a basic blowing amount calculation method based on sewage facilities to evaluate the required oxygen amount and blowing amount according to inflow water quality by logicizing various influencing factors. As a result of calculating the amount of air blown by applying actual April water quality data from sewage treatment plant A to the blower demand calculation developed through this study, it was found that the average amount of air blown was reduced by about 12%. When the blower demand calculation developed here is applied to an actual sewage treatment plant, the amount of air blown can be controlled based on the inflow water quality. This can facilitate the realization of an autonomous control of sewage treatment plants, in contrast to the existing sewage treatment operation method that relies on operational experience of operator. In addition, it is expected that efficient sewage treatment plants can be operated by reducing blowing amounts and power costs, which will contribute to both energy and carbon savings.

A Study on the Optimal Site Selection by Constraint Mapping and Park Optimization for Offshore Wind Farm in the Southwest Coastal Area (서남해 연안 해상풍력 발전단지 지리적 적합지 선정 및 최적배치에 관한 연구)

  • Jung-Ho, Kim;Geon-Hwa, Ryu;Hong-Chul, Son;Young-Gon, Kim;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1145-1156
    • /
    • 2022
  • In order to effectively secure site suitability for the development of large-scale offshore wind farms, it is essential to minimize the environmental impact of development and analyze the conflicts of benefit between social, ecological, and economic core values. In addition, a preliminary review of site adequacy must be preceded in order not to collide with other used areas in the marine spatial plan. In addition, it is necessary to conduct local meteorological characteristics analysis including wind resources near Jeollanam-do area before project feasibility study. Therefore, wind resource analysis was performed using the observation data of the meteorological mast installed in Wangdeungnyeo near Anmado, Yeonggwang, and the optimal site was selected after excluding geographical constraints related to the location of the offshore wind farm. In addition, the annual energy production was calculated by deriving the optimal wind farm arrangement results suitable for the local wind resources characteristics based on WindSim SW, and it is intended to be used as basic research data for site discovery and selection of suitable sites for future offshore wind farm projects.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Design and Implementation of Ethereum-based Future Power Trading System (이더리움 기반의 선물(Future) 전력 거래 시스템 설계)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.584-585
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF