• 제목/요약/키워드: 스마트 머신

검색결과 220건 처리시간 0.028초

인공지능 기술을 활용한 데이터 관리 기술 동향 (Trends in Data Management Technology Using Artificial Intelligence)

  • 김창수;박춘서;이태휘;김지용
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, artificial intelligence has been in the spotlight across various fields. Artificial intelligence uses massive amounts of data to train machine learning models and performs various tasks using the trained models. For model training, large, high-quality data sets are essential, and database systems have provided such data. Driven by advances in artificial intelligence, attempts are being made to improve various components of database systems using artificial intelligence. Replacing traditional complex algorithm-based database components with their artificial-intelligence-based counterparts can lead to substantial savings of resources and computation time, thereby improving the system performance and efficiency. We analyze trends in the application of artificial intelligence to database systems.

목걸이형 센서를 이용한 머신러닝 기반 가축상태 모니터링 (Health Monitoring of Livestock using Neck Sensor based on Machine Learning)

  • 이웅섭;박성민;반태원;김성환;류종열;성길영
    • 한국정보통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.1421-1427
    • /
    • 2018
  • 사물 인터넷 기술의 급속한 발전으로 다양한 종류의 스마트 센서들이 개발 보급되고 있다. 이러한 스마트 센서들은 주로 관리자의 경험에 의해서 관리되던 축산업에도 최근 적용되어 가축 개체에 웨어러블 센서를 달거나 사물인터넷 센서를 갖춘 스마트팜 사용을 통해서 가축관리의 효율성을 향상시키고 있다. 본 논문에서는 목걸이형 스마트 센서를 이용하여 젖소의 체온과 운동량을 측정하고 이를 기반으로 개체의 상태를 파악하는 방안을 개발하였다. 특히 젖소 관리에서 제일 중요한 요소인 젖소의 발정여부를 파악하는 방안을 다양한 머신러닝 방법을 이용하여 분석하였고 이를 통해서 높은 정확도로 발정여부를 예측할 수 있음을 보였다. 제안한 방안의 사용을 통해서 젖소의 발정여부를 빠르게 확인하고 이를 통해서 젖소 관리의 효율성을 향상시킬 수 있다.

머신러닝 기법을 통한 대한민국 부동산 가격 변동 예측 (Real-Estate Price Prediction in South Korea via Machine Learning Modeling)

  • 남상현;한태호;김이주;이은지
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.15-20
    • /
    • 2020
  • 최근 부동산 시장에 대한 관심이 높다. 과거 주거환경으로만 여겨지던 부동산은 끊임없는 수요 증가로 안정적인 투자 대상으로 인식되고 있기 때문이다. 특히 국내 시장의 경우 인구 수의 감소에도 불구하고 1인 가구의 증가 및 대도시로의 인구 유입이 가속화되며 수도권 중심으로 부동산 가격이 급격히 상승하고 현상이 나타나고 있다. 이에 미래 부동산 시장의 전망을 정확히 예측하는 것은 개인의 자산 관리 뿐 아니라 정부 정책 수립 등 사회 전반에 걸쳐 매우 중요한 사안이라고 할 수 있다. 본 논문에서는 머신러닝 기법을 활용해 과거 부동산 매매 데이터를 학습해 미래 부동산 시세를 예측하는 프로그램을 개발하였다. 한국감정원과 국토교통부에서 제공하는 대한민국 부동산 매매 시세 데이터를 활용하였으며 지역별로 2022년도 평균 매매가 예측치를 제시한다. 개발된 프로그램은 오픈소스 형태로 공개하여 다양한 형태로 활용될 수 있도록 하였다.

AI기반 스마트 수질환경관리 서비스 플랫폼 개발 (AI-based smart water environment management service platform development)

  • 김남호
    • 스마트미디어저널
    • /
    • 제11권9호
    • /
    • pp.56-63
    • /
    • 2022
  • 최근 기후변화에 의한 수온상승, 과다한 영양염류의 유입 및 하천환경의 변화로 인한 주요하천 및 호소에 대한 조류발생 빈도 및 범위가 증가하고 있다. 이상조류에는 녹조와 적조가 있다. 녹조현상은 물속의 클로로필(Chl-a) 등의 남조류가 과다 성장하여 물의 색이 짙은 녹색으로 변하는 현상으로, 미량의 냄새물질과 독소를 생성하여 수질악화와 식수안전에 대한 우려가 급증하고 있다. 본 연구는 생활주변 환경의 생태하천과 호소에서 측정된 수질정보를 원격지에서 1:1 실시간모니터링 및 제어하기 위하여 디지털트윈의 3D 가상세계를 구축하고, 사물인터넷(IOT) 센서기반의 수질정보 센서측정기를 개발하며, AI의 머신러닝 기반 수집데이터 분석을 토대로 녹조 등 수질오염의 발생원인과 확산패턴을 예측하여 조류경보와 수질예보를 할 수 있는 스마트 수질환경 서비스 플랫폼 구축을 제안하고자 한다.

머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구 (A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning)

  • 이승운;정승권
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1071-1081
    • /
    • 2021
  • 본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things (IoT) 도시기상 관측 자료에 대한 품질검사 기준을 제안한다. 현재 기상청에서 종관기상관측(Automated Synoptic Observing System, ASOS)과 방재기상관측(Automatic Weather System, AWS) 기반으로 설정한 기준이 도시기상에 적합한지 확인하기 위하여 서울시에 설치된 SKT AWS 자료를 기반으로 사용성을 검증하였고, IoT 자체의 데이터가 가지는 특성을 고려하여 최종적으로 머신러닝 기반의 품질검사 알고리즘을 제안하였다. 품질검사 방법으로는 IoT 기기 자체에 대한 결측값 검사, 값 패턴 검사, 충분 데이터 검사, 통계적 범위 이상 검사, 시간값 이상 검사, 공간값 이상 검사를 먼저 수행하고, 기상청에서 제시하고 있는 기상 관측에 대한 품질검사인 물리한계검사, 단계검사, 지속성 검사, 기후범위 검사, 내적 일치성 검사를 5가지 기상요소에 대하여 각각 수행하였다. 제안한 알고리즘의 검증을 위하여 인천광역시 송도에 위치한 관측소에 실제 IoT 도시기상관측 데이터에 이를 적용하였다. 이를 통해 기존의 기상청 QC로는 확인할 수 없었던 IoT 기기가 가질 수 있는 결함을 확인할 수 있고, 알고리즘에 대한 검증을 진행하여 향후 스마트시티에 설치될 IoT 기상관측기기에 대한 품질검사 방법을 제안한다.

모바일 쇼핑 환경에서 사용자 데이터 수집 및 개인화 서비스 방법 (User Data Collection and Personalization Services in Mobile Shopping Environment)

  • 김성진;김성규;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.560-561
    • /
    • 2018
  • 스마트폰의 보급으로 온라인 쇼핑 시장에서 모바일 쇼핑의 비중이 확대되고 있다. 대부분의 모바일 쇼핑은 애플리케이션을 통해 서비스를 제공하고 있다. 기업들은 온라인 마켓의 경쟁력 확보와 소비자의 다양한 요구사항 응대를 위해 개인화 서비스를 제공한다. 하지만 개인화 서비스는 사용자 데이터 수집과 분석이 매우 중요하다. 따라서 본 논문에서는 모바일 쇼핑 환경의 사용자 데이터 수집을 위해 스마트폰의 카메라를 이용하여 물품의 바코드 인식기능과 머신러닝 기반 물품의 이미지 인식 기능을 구현하였다. 구현된 기능과 푸시 알림 서비스를 통해 온라인 쇼핑 플랫폼 애플리케이션의 개인화 서비스와 사용자 데이터 수집 및 분석을 할 수 있었다.

  • PDF

다차원 데이터 처리를 위한 맵리듀스 기반의 그리드 파일 생성기법에 관한 연구 (A Study on The Grid File Construction Method based on MapReduce for Multidimensional Data Processing)

  • 정주혁;이상호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.77-80
    • /
    • 2014
  • 최근 컴퓨터와 인터넷 이용의 확산, 스마트폰을 포함한 스마트 기기의 보급과 소셜 네트워크 이용의 확대, 위치 기반의 다양한 서비스 확대 등으로 처리해야 할 데이터 크기가 증가하는 추세이다. 이에 따라 대용량 데이터에 대한 처리가 큰 이슈로 떠오르고 있다. 그로 인해 대용량 데이터 처리를 위한 큰 규모의 분산 컴퓨팅 환경을 지원하는 프레임워크인 하둡이 개발되었으며 많은 기업에서 이를 활용하고 있는 추세이다. 하지만 대용량 데이터 중 영상, 의료, 센서 데이터 등 다차원 데이터 처리에 관한 연구는 미비한 상태이다. 기존의 다차원 데이터 처리를 위해 다양한 다차원 인덱스가 제안되었지만, 대용량 다차원 데이터 처리는 단일머신에서는 비효율적인 단점이 있다. 본 논문에서는 다차원 인덱스 기법인 그리드 파일을 하둡의 분산 병렬 처리 모델인 맵리듀스를 기반으로 생성하는 기법을 제안한다. 또한 앞서 생성된 그리드 파일을 가지고 맵리듀스를 이용한 질의처리 방법을 제안 한다. 이로 인해 단일머신에서의 그리드 파일 생성을 병렬처리 함으로써 생성 시간을 단축시키고 질의 처리 또한 맵리듀스를 이용하여 병렬 처리 함으로써 질의 시간 단축을 예상한다.

머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 - (Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si)

  • 이수현;서용원;김세인;이재경;윤원주
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

SAR 영상 기반 수체탐지를 위한 최적 편파 조합 분석 (Optimal Polarization Combination Analysis for SAR Image-Based Hydrographic Detection)

  • 이성우;김완엽;조성근;최민하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.359-359
    • /
    • 2023
  • 최근 기후변화로 인한 홍수 및 가뭄과 같은 자연재해가 증가함에 따라 이를 선제적으로 탐지 및 예방할 수 있는 해결책에 대한 필요성이 증가하고 있다. 이러한 수재해를 예방하기 위해서 하천, 저수지 등 가용수자원의 지속적인 모니터링은 필수적이다. SAR 위성 영상의 경우 주야간 및 기상상황에 상관없이 지속적인 수체 탐지가 가능하다. 일반적으로 SAR 기반 수체 탐지 시 송수신 방향이 동일한 편파(co-polarized) 영상을 사용한다. 하지만 co-polarized 영상의 경우 바람 및 강우에 민감하게 반응하여 수체 미탐지의 가능성이 존재한다. 한편 송수신 방향이 서로 다른 편파(cross-polarized) 영상은 강우 및 바람의 영향에 민감하지 않지만 식생에 민감하게 반응하여 수체의 오탐지율이 높다는 단점이 존재한다. 이에 SAR 영상의 편파 특성에 따라 수체 탐지의 정확도 차이가 발생하여 최적의 편파 영상 조합을 구성하는 것이 중요하다. 본 연구에서는 Sentinel-1 SAR 위성의 VV, VH, VV+VH 편파 영상과 머신러닝 알고리즘 중 하나인 SVM (support vector machine)을 활용하여 수체탐지를 수행하였다. 편파 영상 조합별 수체 탐지 결과의 검증을 위하여 혼동행렬 (confusion matrix) 기반 평가지수를 사용하였다. 각각의 수체탐지 결과의 비교 및 분석을 통하여 SAR 기반 수체 탐지를 위한 최적의 밴드 조합을 도출하였다. 본 연구결과를 바탕으로 차후 높은 시공간 해상도를 가진 SAR 영상의 활용이 가능하다면 수재해 및 수자원 관리의 효율성을 높일 수 있을 것으로 기대된다.

  • PDF