젖소에 있어 유방염은 농가의 낙농 생산성을 저해하는 주된 요인이며 이를 해결하기 위해 지난동안 폭넓은 연구가 이루어졌다. 하지만 유방염에 대한 연구는 사후 진단에 국한되어왔으며 이마저도 단일 센서를 활용하는 것이 주류이다. 본 연구에서는 생체 데이터와 환경 데이터를 이용하여 다음 날의 유방염 발병여부를 예측하는 모델을 개발하였다. 데이터는 충청남도 농가에 설치된 착유기와 센서들로부터 수집되었으며 3주간의 데이터를 다변량 데이터로 구성하였다. 유방염 진단예측을 위해 순환 신경망 모델을 사용하였고, 그 결과 유방염을 82.9%의 정확도로 예측하였다. 데이터 수집 기간을 다양하게 하여 예측 성능을 비교하였고 여러 모델과 성능을 비교하여 모델의 우수성을 확인하였다.
본 연구는 4차 산업혁명 도래와 COVID-19 팬데믹이라는 뉴노멀한 환경에도 적응할 수 있는 SW교육이 필요하다. 디지털 사회에서 필수품이 되어버린 작고 강력한 스마트기는 좋은 교구로 앱인벤터 프로그램을 활용한 생활 속 유용한 앱이나 데이터로 학습시킨 인공지능 모듈을 장착한 앱을 만드는 과정을 설계하고 적용하였다. 대면과 비대면 방식이 혼합된 블랜디드 방식으로 수업을 실시한 후 효과성 측정으로 인공지능의 기술적·인지적 성숙도와 블랜디드 소프트웨어 수업에 대한 장·단점에 대한 의견을 설문 질의를 통하여 알아보았다. 인공지능을 활용한 앱인벤터 소프트웨어 수업 전·후 미래의 국가발전 차원에서 많은 수요가 필요한 SW관련 인재 직업군을 탐색하고자하는 의향인 진로지향도 변화를 알아보았다. 하위 요소 중 3개가 항목에서 유의미한 결과가 도달하였다. 비대면 상황에서도 인공지능을 활용한 앱인벤터 소프트웨어교육 프로그램이 실제 현장에 제공되길 기대한다.
자율배송 운행 데이터는 코로나 시대의 라스트마일 배송에 대한 패러다임 변화를 주도하는 핵심이다. 국내 자율배송로봇과 해외 기술선도국가 간의 기술격차 해소를 위해서는 인공지능 학습에 사용 가능한 대규모 데이터 수집과 검증이 최우선으로 요구된다. 따라서 해외 기술선도국가에서는 인공지능 학습데이터를 누구든 사용가능한 공공데이터 형태로 오픈하여 검증과 기술발전에 기여하고 있다. 본 논문은 자율배송로봇 학습을 목적으로 326개의 객체를 수집하고 Mask r-cnn, Yolo v3 등의 인공지능 모델을 학습하고 검증하였다. 추가적으로 두 모델을 기반으로 비교하고 향후 자율배송로봇 연구에 요구되는 요소를 고찰하였다.
제스처는 스마트 글라스 등 웨어러블 기기의 NUI(Natural User Interface)로 주목받고 있다. 최근 MPEG에서는 IoT(Internet of Things) 및 웨어러블 환경에서의 효율적인 미디어 소비를 지원하기 위한 IoMT(Internet of Media Things) 표준화를 진행하고 있다. IoMT에서는 손 제스처 검출과 인식이 별도의 기기에서 수행되는 것을 가정하고 이들 모듈간의 인터페이스 규격을 제공하고 있다. 한편, 최근 인식률 개선을 위하여 딥러닝 기반의 손 제스처 인식 기법 또한 활발히 연구되고 있다. 본 논문에서는 IoMT의 유스 케이스(use case)의 하나인 웨어러블 기기에서의 미디어 소비 등 다양한 응용을 위하여 CNN(Convolutional Neural Network) 기반의 손 제스처 인식 기법을 제시한다. 제시된 기법은 스마트 글래스로 획득한 스테레오 비디오로부터 구한 깊이(depth) 정보와 색 정보를 이용하여 손 윤곽선을 검출하고, 검출된 손 윤곽선 영상을 데이터 셋으로 구성하여 CNN을 학습한 후, 이를 바탕으로 입력 손 윤곽선 영상의 제스처를 인식한다. 실험결과 제안기법은 95%의 손 제스처 인식율를 얻을 수 있음을 확인하였다.
하드웨어 자체적으로 가상화를 지원하는 기능들이 추가됨에 따라 다양한 작업 유형을 가진 사용자 어플리케이션들이 가상화 시스템에서 효율적으로 운용되고 있다. 가상화 지원 기능 중 SR-IOV는 PCI 장치에 대한 직접 접근을 통해 하이퍼바이저 또는 운영체제 개입을 최소화하여 시스템 성능을 높이는 기술로 베어-메탈 시스템 대비 비교적 긴 I/O 경로 및 사용자 영역과 커널 영역에 대한 빈번한 컨텍스트 스위칭 등 가상화 계층의 추가로 낮은 네트워크 성능을 가진 가상화 시스템에서 네트워크 I/O 가속화를 실현하게 해준다. 이러한 성능적 이점을 이용하기 위해 가상머신 또는 컨테이너와 같은 인스턴스에 SR-IOV를 접목할 시 최적의 네트워크 I/O 성능을 도출할 수 있는 네트워크 자원 관리 정책이 활발히 연구되고 있다. 본 논문은 I/O 가속화를 실현하는 SR-IOV의 네트워크 성능을 1) 네트워크 지연 시간, 2) 네트워크 처리량, 3) 네트워크 공정성, 4) 성능간섭, 5) 다중 네트워크와 같은 측면으로 세밀한 성능 평가 및 분석을 Virtio와 비교하여 진행한다. 본 논문의 기여점은 다음과 같다. 첫째, 가상화 시스템에서 Virtio와 SR-IOV의 네트워크 I/O 과정을 명확히 설명했으며, 둘째, Virtio와 SR-IOV의 네트워크 성능을 다양한 성능 메트릭을 기반으로 분석하였다. 셋째, 가상머신 밀집도가 높은 환경에서 SR-IOV 네트워크에 대한 시스템 오버헤드 및 이에 대한 최적화 가능성을 실험으로 확인하였다. 본 논문의 실험 결과 및 분석들은 스마트 팩토리, 커넥티드-카, 딥러닝 추론 모델, 크라우드 소싱과 같은 네트워크 집약적인 서비스들을 운용하는 가상화 시스템에 대한 네트워크 자원 관리 정책에 활용될 것으로 기대된다.
본 논문은 인공지능 모델의 하나인 YOLO(You Only Look Once) 인식모델 기반의 이미지 내 객체인식을 위한 활용 환경에서 딥 러닝 네트워크를 통한 고속 이동 대상체 인식의 가능성 향상과 생활 속에서 쉽게 활용될 수 있도록 2차적인 정보의 가공을 통한 의미적 데이터 수집 방법을 연구하는데 그 목적이 있다. 인식모델에서 이동 대상체 인식오류는 카메라의 프레임 속도와 대상체의 이동속도 차이에서 발생하는 미인식과 대상체와 인접한 환경에서의 유사물체가 존재로 인한 오인식으로 확인되었으며 이를 보상하는 데이터 수집 방법을 제안했다. 실제 유사환경을 대표할 수 있는 스포츠(테니스 경기)를 대상으로 획득된 이미지에서 오류의 원인요소를 비전처리 기술을 적용하여 해당오류를 최소화하기 위한 방법과 처리구조를 연구하여 유효한 2차적인 데이터 수집의 효과성을 향상시켰다. 따라서 본 연구에서 제안된 데이터 수집 방법을 적용함으로써 일반인도 스마트폰 카메라의 간단한 촬영을 통해 스스로 건강 및 경기력 향상을 위한 스포츠 및 건강관련 산업에 적용될 수 있는 데이터의 수집 및 관리가 가능함을 보였다.
미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.
정보기술의 급격한 발달은 의료 환경에서도 많은 변화를 가져오고 있다. 특히 빅데이터와 인공지능(AI)을 활용한 의료영상 정보 시스템의 빠른 변화를 견인하고 있다. 전자의무기록(EMR)과 의료영상저장전송시스템(PACS)으로 구성된 처방전달시스템(OCS)은 의료 환경을 아날로그에서 디지털로 빠르게 바꾸어 놓았다. PACS는 여러 솔루션과 결합하여 호환, 보안, 효율성, 자동화 등 새로운 발전 방향을 보여주고 있다. 그 중, 영상의 질적 개선을 할 수 있는 빅데이터를 활용한 인공지능(AI)과의 결합이 활발히 진행되고 있다. 특히 딥러닝 기술을 활용하여 의료 영상 판독을 보조할 수 있는 시스템인 AI PACS가 대학과 산업체의 협력으로 개발되어 병원에서 활용되고 있다. 이처럼 의료 환경에서 의료영상 정보 시스템의 빠른 변화에 맞추어 의료시장의 구조적인 변화와 이에 대처할 수 있는 의료정책의 변화도 필요하다. 한편, 의료영상정보는 디지털 의료영상 전송 장치에서 생성되는 DICOM 방식을 기본으로 하고, 생성하는 방법의 차이에 따라 Volume 영상, 단면 영상인 2차원적 영상으로 구분된다. 또한, 최근 많은 의료기관에서는 스마트 병원 서비스를 내세우며 차세대 통합 의료정보시스템의 도입을 서두르고 있다. 차세대 통합 의료정보시스템은 EMR을 바탕으로 전자동의서, AI와 빅데이터를 활용한 정밀의료, 외부기관 등을 통합한 솔루션으로 구축하며, 이를 바탕으로 환자 정보 DB 구축과 데이터의 표준화를 통한 의료 빅데이터 기반의 의학 연구를 목적으로 한다. 우리나라의 의료영상 정보 시스템은 앞선 IT 기술력과 정부의 정책에 힘입어 세계적인 수준에 있으며, 특히 PACS 관련 프로그램은 의료 영상정보 기술에서 세계로 수출을 하고 있는 한 분야이다. 본 연구에서는 빅데이터를 활용한 의료영상 정보 시스템의 분석과 함께 의료영상 정보 시스템이 국내에 도입되게 된 역사적 배경을 바탕으로 현재의 흐름을 파악하고 나아가 미래의 발전 방향을 예측하였다. 향후, 20여 년 동안 축적된 DICOM 빅데이터를 기반으로 AI, 딥러닝 알고리즘을 활용하여 영상 판독률을 높일 수 있는 연구를 진행하고자 한다.
학생들이 다른 언어를 배우고 익히도록 동기부여를 하기 위해 기발한 독창성과 새로운 기술을 필요로 할 것이다. 멀티미디어를 이용하면 수업과 과제를 모든 학생들에게 흥미롭게 해줄 것 이다. 그들에게 관심이 있는 스마트 폰의 사용과, 노트북과 무선 인터넷의 사용으로 학생들은 그들의 언어 기술을 실제로 어디에서나 공부할 수 있을 것 이다. 예를들어 팟캐스트, 인터넷망을 통해 다양한 콘텐츠를 제공하는 서비스 Podcasts 도구 방법 등을 통해 ESL(English as a Second Language) 학습이 매우 용이하게 되었다. 즉 이러한 멀티미디어 tools를 이용한 외국어 듣기 연습 서비스 등 다양한 교수 학습방법 개발이 필요하다. 효율적인 영어 교육을 위한 도입된 이러한 여러 멀티미디어 기기의 사용은 여러 가지 독특한 장점을 가지고 있다. 본 연구에서 영어 교육을 최대화하기 위해 멀티미디어의 특징과 그 활용에 대해 연구하고자 한다. 디지털교과서 및 영어 수업을 위한 멀티미디어 콘텐츠 도구 활용, 인터넷 방송은 물론 원격화상 수업, 사이버 학습 등 1:1 영상 교육을 이용한 유비쿼터스 학습 환경을 제시하고자 한다. 더 나아가 최첨단 u-러닝 기기의 체험을 통해 미래 교육 변화를 조망하고 또한 다양한 수업기기와 변화된 수업시스템 모델을 통해 영어 교육의 새로운 방향을 제시하고자 한다.
컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.