• Title/Summary/Keyword: 스로틀액츄에이터 시스템

Search Result 3, Processing Time 0.017 seconds

Control of throttle actuator system based on time delay control (시간지연제어에 기초한 스로틀액츄에이터 시스템의 제어)

  • Song, Jae-Bok;Byeon, Kyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2081-2089
    • /
    • 1997
  • Accurate positioning of the throttle valve of a gasoline engine is required to implement various systems such as traction control system(TCS), cruise control system and drive-by-wire system. In this research, position control system has been developed for the throttle actuator system that uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive the DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Also, time delay control(TDC) law has been used as a basic control algorithm. A method of varying the reference model of the TDC according to the size of change in target throttle angle is proposed here. The simulation and experimental results show that both overshoot prevention and fast response are achieved by the TDC technique with this variable reference model.

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

Anti-windup PID Control of Engine Throttle Actuator in Autonomous ATV (무인 ATV 엔진 스로틀 액츄에이터의 안티 와인드업 PID 제어)

  • Kim, Soon-Tae;Jung, Jin-Gu;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.295-296
    • /
    • 2007
  • 본 논문에서는 무인화 ATV 엔진 액츄에이터의 시스템 특수성을 고려한 PID 제어기의 설계를 통하여 종방향 구동을 담당하는 DC 모터의 위치제어 성능을 향상시켰다. DC 모터의 문턱 전압과 마찰력으로 인한 데드존(Dead zone)을 고려하였으며, DC 모터에 연결된 액츄에이터 와이어에 의한 복원력에 대한 영향을 최소화 시켰다. 또한 DC모터의 위치를 판별하는 엔코더의 분해능을 감안하여 제어기 설계에 반영하였고, 실험을 통하여 성능을 검증하였다.

  • PDF