• 제목/요약/키워드: 스로틀밸브

Search Result 25, Processing Time 0.03 seconds

A Study on System Identification for Cruise Control of Vehicle (자동차 순항주행 제어를 위한 시스템 식별에 관한 연구)

  • Yang, Seung-Hyun;Yang, Jae-Won;Nam, Khi-Heon;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1826-1827
    • /
    • 2006
  • 본 논문에서는 운행 중인 자동차에서 스로틀밸브의 각도와 자동차의 속도를 추출하고 시스템 식별 알고리즘을 이용해 비교적 정확한 자동차의 수학적 모델링 식 즉, 전달함수를 구하고, 식별 알고리즘에 의해 구해진 고차 형태의 전달함수를 2차식과 시간지연 항으로 간략화 시켜 자동차가 순항 운행할 수 있는 제어기를 설계한다.

  • PDF

A Study on the Secondary Atomization Characteristics of Liquid Fuel in the Perforated Throttle Valve (다공 스로틀 밸브에서의 액체 연료의 2차 미립화 특성에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Cho, B.O.;Oh, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • In a fuel injection engine, atomization of liquid fuel and mixture formation process has influenced(or affected) directly on the engine performance and pollutant emission. In this study, the characteristics of fuel spray and the behaviors of secondary atomization developed at the downstream of the valves were investigated using an image processing method. Solid and perforated valves are chosen in order to evaluate the valve performance in terns of air flow rate, valve opening angle and valve shape. Experimental results clearly indicate that the spray atomization quality can be improved by increasing the perforated rat io and the blockage rat io in the perforated valve, the characteristics of spray atomization is improved by using the perforated valve with high perforated rat io and blockage ratio.

  • PDF

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2011
  • When a liquid rocket engine - specifically for the gas-generator cycle engine has throttle valves to control the thrust level and mixture ratio of the engine, it is possible to adjust the inherent flow characteristics of the control valves in order to secure a linearized correlation between the control-process-parameters like the thrust or mixture ratio of an engine and the throttle angle of valve. These linearities can reduce the complexity of the control process and make the process more explicit by ensuring the intuitive control. In this point, we proposed an algorithm within the frame of the in-house-developed program to obtain the control valves' inherent flow characteristics which satisfy the linearity, and calculated the sensitivities of control valves with respect to the throttle angle. Also, we compared the obtained inherent flow characteristics with the existed data and concluded the results are satisfactory.

The Effect of Cleaning the Intake System of LPG Vehicles on Engine and Emissions (LPG차량 흡기계통 Cleaning이 엔진 및 배출가스에 미치는 영향)

  • Hong, Sung-In;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1229-1235
    • /
    • 2014
  • At the LPG vehicle air intake system, most of dust particles in the air cleaner are removed. However very small particles are not removed and accumulated. The accumulation of carbon in air intake system is going to affect the idle speed control and sensor signal. It also causes engine chattering and transmission troubles of automatic transmission. This is study about cleaning up intake system using cleaning chemical. We can clean up the intake system by spraying cleaning liquid onto intake device when the engine is idling after intake hose is removed from warmed up vehicle. We can obtain the following experimental results by cleaning up ISC, surge tank, intake manifold, intake valves and combustion chamber. According to this results, the stroll valve works correctly and power rate of engine is up to the standard, it is smoothy to control the idling speed when a vehicle pulls up. After cleaning up CO grow down about 0.15%, HC does about 20~100 ppm.

Development of a screw type super-charger for part load control (부분부하제어를 위한 스크류형 과급기 개발)

  • Bae, Jae-Il;Bae, Sin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

The Study on the Control Performance of a Screw Type Super-charger for Automotive Use (자동차용 스크류형 과급기의 제어성능에 관한 연구)

  • 배재일;배신철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2003
  • Boosting of engine power by using Turbo- or Super-charger is a solution to comply with $CO_2$-regulation in Europe. Turbo-charger is now playing a major role in the field of charging system thank to its technical advantages such as no demand of operation power from engine. A mechanically driven Super-charger, however, is now popular due to quick speed response to change of the driving mode-high engine torque even at low engine speed. Since Super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of Turbo-charger. This negative point is still an obstacle to the wide use of Super-charger. This study aims to develop power control concept to achieve the minimization of operation power when it is not necessary to charge at idling or part load driving condition. A screw type Super-charger was modified in design partially and adapted an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of Super-charger and result in improvement of fuel consumption.

Energy Separation Characteristics of 7mm Diameter Vortex Tube according to the Length Variation (직경 8mm Vortex Tube의 길이변화에 따른 에너지분리 특성)

  • Moon, Song-Hyun;Kim, Chang-Su;Lee, Young-Sun;Kim, Sang-Woo;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.596-599
    • /
    • 2011
  • 볼텍스 튜브는 고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용할 수 있는 장치이다. 본 연구에서는 직경 8mm 볼텍스 튜브의 길이변화가 에너지분리 특성에 미치는 영향을 실험을 통하여 분석하였다. 결론적으로 튜브길이 변화에 따른 영향력은 미미하였으나, 그 중 가장 짧은 튜브길이 64mm에서 고온 출구 측의 온도차가 가장 우수한 성능을 나타내었다. 반면, 저온 출구 측에서는 거의 영향을 미치지 못하는 것을 확인하였다. 본 연구는 볼텍스 튜브의 기초설계자료로 활용될 예정이다.

  • PDF

A Test Design and Configuration for Turbopump and Gas Generator Coupled Test (터보펌프 가스발생기 연계시험에서의 시험영역 설정과 설비 설계)

  • Nam, Chang-Ho;Kim, Cheul-Woong;Kim, Seung-Han;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.107-110
    • /
    • 2008
  • The test range for turbopump and gas generator coupled test was determined considering the engine system test area which cover the qualification and development. Based on the test range, we determined the required loss coefficient for the throttle valves and lines.

  • PDF