• Title/Summary/Keyword: 슐리렌 사진

Search Result 7, Processing Time 0.021 seconds

Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames (메탄-산소 층류화염전파속도 측정)

  • Oh, Jeong-Seog;Noh, Dong-Soon;Lee, Eun-Gyeong;Hong, Seong-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.258-262
    • /
    • 2011
  • The laminar burning velocity in premixed Oxy-CH4 flames was studied in a lab-scale Bunsen burner. $CH^*$ chemiluminescence method and Schliren photography were used. Experimental results were compared with numerical prediction which was calculated with a CHEMKIN 3.7 package with a PREMIX code. Global equivalence ratio of oxy-CH4 mixture was varied from 0.5 to 2.0 in a laminar flow region. The laminar burning velocity was measured as 3.1 m/s for Schlieren photograph and 2.9 m/s for $CH^*$ chemiluminescence technique (angle method).

  • PDF

Heat Loss to Combustion Chamber Wall During Laminar Flame Propagation (층류화염전파중의 연소실 벽면으로의 열손실)

  • 이상준;한동호;김문헌;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1398-1407
    • /
    • 1992
  • The prediction of heat loss during laminar flame propagation was carried out by measurement of gas pressure and visualization of flame propagation in the constant volume combustion chamber. And to validate the prediction, the instantaneous temperature at wall of combustion chamber was also measured. Consequently, it was found that heat loss was increased according to increasing of maximum flame travel distance, but rate of heat loss for heat release during laminar flame propagation was nearly constant. And heat loss depends on heat transfer area which was contacted the wall by burned gas regardless to spark plug location.

A Study on NOx Pollutant Reduction and Combustion Characteristics of Impinging-Jet-Flame Combustion Process( II ) (대향분출염(對向噴出焰) 연소방법(燃燒方法)에 의(依)한 NOx 생성저감(生成低減)과 연소특성(燃燒特性) 연구(硏究)( II ))

  • Jeung, I.S.;Cho, K.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.124-131
    • /
    • 1994
  • 자동차엔진의 연소과정에 상사하는 밀폐정적연소실을 주연소실과 대향 2개 부연소실로 분할하고 오리피스로 연결하였다. 이때 부연소실로부터 주연소실로 분출하는 대향분출염 연소에 의한 질소산화물 배출저감특성을 연소방식, 연소실형상 그리고 연료종류를 변경한 수종의 실험으로 조사하였다. 질소산화물농도, 연소실 최고압력, 화염전파과정의 고속도슐리렌사진 가시화를 수행한 결과, 대향분출염 연소방식을 도입하연 연소실의 중앙부공간이 상대적으로 넓은 경우에 고부하운전과 동시에 질소산화물의 배출량도 저감할 수 있었다. 그러나 연료의 종류는 질소산화물생성에 매우 영향이 적었다.

  • PDF

Experimental Study on Fuel-Air Mixing Using Flat Plate/Cavity in Supersonic Flow (초음속 유동장 내 평판/cavity를 이용한 연료-공기 혼합의 실험적 연구)

  • Kim, Jeong-Woo;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.319-322
    • /
    • 2006
  • Rapid mixing of air-fuel (<1 ms) is needed to accomplish supersonic combustion. In this experiment, helium was injected laterally in to the Mach 1.92 air flow. 2 kinds of model, flat plate/cavity, were used in this experiment and images were taken by schlieren visualization. Pressure was affected by shock structure in the supersonic duct, and penetration height was increased by increasing J. Penetration height was higher in the cavity model than flat plate model.

  • PDF

Ignitability and Combustion Characteristics of Lean Mixture by Multi-Point Ignition (희박혼합기에 대한 다점점화의 점화능력 및 연소특성)

  • ;;;Lee, Sang Joon;Han, Sung Bin;Lee, Jong Tai
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2607-2616
    • /
    • 1995
  • The influences of number of spark plug on ignitability, combustion characteristics and combustion promotion effect were examined to establish the design conception of spark ignition system for lean burn. Ignitability was increased remarkably by increasing of number of spark plug at combustion wall. Combustion duration was shortened and maximum combustion pressure was increased in accordance with increasing of spark plug number. Rate of overall combustion promotion considered of combustion duration and combustion pressure was 28% in two point ignition and 40% in four point ignition. It was verified that heat release, heat loss and combustion duration were affected by flame area, heat transfer area and maximum flame travel distance respectively.

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition (연료분출 조건에 따른 확산화염의 연소특성에 관한 연구)

  • Lee, Sung-No;An, Jin-Geun
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • The combustion characteristics of diffusion flame formed in the wake of a cylindrical stabilizer with varying fuel injection angle were studied. This study was performed by measuring the flame stability limits, lengths and temperatures of recirculation zones of flames, turbulence intensity in the wake of stabilizer, and concentration distribution of combustion gas, and by taking photographs of flames. The flame stability limits are dependent on fuel injection angle and main air velocity. The length and temperature of recirculation zone are dependent on fuel injection angle. As the length of the recirculation zone is decreased, the flame shows more stable behavior. The temperature of recirculation zone has a maximum value at the condition of theoretical mixture. The flame stability is enhanced when the temperature in the recirculation zone decreases. The turbulence intensity in the wake of stabilizer is independent of the fuel injection angle, but it is affected by stabilizer itself and main air flow condition. If the stabilization characteristics of flame is good, the concentration of $C_3H_8$ is high, but the concentration of $CO_2$ is low at the boundary of recirculation zone. The combustion characteristics of diffusion flame can be controlled by changing the fuel injection angles. The appropriate fuel injection angle should be selected to get high combustion efficiency, high load power, low environmental pollution, and clean combustion condition of fuel.

  • PDF