컴퓨터와 네트워크 기술의 향상은 예전에는 슈퍼컴퓨터에서나 가능한 일을 분산 처리할 수 있는 환경적 기반을 제공한다. 분산 컴퓨팅 환경을 제공하기 위해서는 우선 분산 런타임 시스템이 구축되어야 하는데 기존의 전통적인 분산 런타임 시스템들은 대부분이 정적인 마스터 노드와 작업 노드들로 구성되는 구조를 갖기 때문에 분산처리 작업량의 변동에 따라 시스템을 유연하게 동적으로 재구성할 수 없다는 단점을 갖는다. 이에 본 논문에서는 P2P 환경에서의 분산 런타임 시스템인 작업 할당 관리자의 모델을 제시하고 구현하여 유연하고 동적인 시스템 구축이 가능하도록 하였다. 즉, P2P 표준 프로토콜인 JXTA 플랫폼 상에서 협업 환경을 위해 개발자들 간에 작업 프로그램의 전달과 관리, 그리고 원격 컴파일과 실행 작업들을 수행할 수 있도록 하였다 이 방식은 유연하고 동적인 시스템 구축이 가능하기 때문에 작업의 분산처리를 위해 필요한 유휴 자원들을 필요한 시점에 즉시 확보하여 활용할 수 있다는 장점을 가진다. 이와 더불어 인터넷 정보검색을 위해 방대한 데이터를 수집하는 크롤러를 본 논문에서 구현한 시스템을 이용하여 분산 처리시킴으로써 본 시스템의 유용성과 분산처리 성능을 보여 줄 수 있도록 하였다.
최근에는 열유체, 물리, 화학, 구조동역학, 전산설계 등의 응용과학 분야의 교육 및 연구에 실제 실험이 아닌 슈퍼컴퓨터 및 고성능 네트워크 기반의 사이버 인프라에서 과학적 가정에 의해 복잡한 공학문제를 수치적 모델링과 컴퓨터 시뮬레이션을 통해 해결하는 계산과학을 이용하는 최적의 방법론 및 기법들의 연구의 필요성이 증대되고 있다. 본 논문에서는 컴퓨팅 시뮬레이션 기법을 활용한 실험 체험형 교육의 일환으로, 이공계 교수, 학생, 연구자, 산업체 인력 등이 사이버 인프라스트럭처 기반으로 최신 시뮬레이션 SW를 활용하여 차세대 교육 연구를 융합할 수 있는 EDISON 개방형 통합 플랫폼을 제시한다. EDISON 플랫폼은 사용자들에게 보다 쉽고, 편하고, 효과적인 서비스 제공을 위해 3계층(EDISON 응용 프레임워크, EDISON 미들웨어, EDISON 인프라 자원)으로 구성되고 5개 분야(열유체, 화학, 물리, 구조동역학, 전산설계) 문제해결 환경을 위한 교육 연구용 웹 포털 서비스를 제공한다.
데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.
슈퍼 컴퓨팅 기술 및 하드웨어 기술의 발달로 수치 연산 방식 또한 고도화되고 있다. 그에 따라 이전 대비 향상된 기상 예측 또한 가능해진다. 본 논문에서는 SCAM(Single-Columns Atmospheric Model, CESM(Community Earth System Model)을 간소화 한 버전)에 포함되어 있으며 대기 연산을 수행하는 적운 모수화 코드, Unicon(A Unified Convection Scheme)의 성능을 향상하기 위하여 소스 코드 내의 선형대수 수치적 연산 부분에 고밀도 선형대수 연산을 위한 라이브러리인 LAPACK(Linear Algebra PACKage) BLAS(Basic Linear Algebra Subprograms)의 level1 함수를 적용할 것을 제안한다. 이를 분석하기 위하여 SCAM의 전체적인 실행 구조도를 제시하고 해당 실행환경에서 테스트를 진행하였다. 기존 소스 코드 대비 SCOPY 함수는 0.4053%, DSCAL 함수는 0.7812%, DDOT 함수는 0.0469%의 성능 향상을 이끌어 내었으며 이를 모두 적용한 결과 기존 소스 코드 대비 0.8537%의 성능 향상을 보였다. 이는 본 논문에서 제안한 고밀도 선형대수 연산을 위한 라이브러리인 LAPACK BLAS 적용 방법이 동일한 CPU 환경에서 추가적인 하드웨어의 개입 없이 성능을 향상시킬 수 있음을 의미한다.
지구 대기에 영향을 주는 거의 모든 인간활동과 자연현상을 수치적으로 담아내는 지구시스템모델은 기후 위기의 시대에 활용될 가장 진보한 과학적 도구이다. 특히 우리나라 기상청이 도입한 지구시스템모델인 Unified Model (UM)은 지구 대기 연구의 과학적 도구로써 매우 활용성이 높다. 하지만 UM은 수치 적분과 자료 저장에 방대한 자원이 필요하여 개별 연구자들은 최근까지도 기상청 슈퍼컴퓨터에만 UM을 가동하는 상황이다. 외부와 차단된 기상청 슈퍼컴퓨터만을 이용하여 모델 연구를 수행하는 것은 UM을 이용한 모형 개선과 수치 실험의 원활한 수행에 있어 효율성이 떨어진다. 본 연구는 이러한 한계점을 극복할 수 있도록 개별 연구자가 보유한 고성능 병렬 컴퓨터(리눅스 클러스터) 에서 최신 버전 UM을 원활하게 설치하여 활용할 수 있도록 UM 시스템 환경 구축 과정과 UM 모델 설치 과정을 구체적으로 제시하였다. 또한 UM이 성공적으로 설치된 리눅스 클러스터 상에서 N96L85과 N48L70의 두 가지 모형 해상도에 대하여 UM 가동 성능을 평가하였다. 256코어를 사용하였을 때, 수평으로 1.875° ×1.25° (위도×경도)와 수직으로 약 85 km까지 85층 해상도를 가진 N96L85 해상도에 대한 UM의 AMIP과 CMIP 타입 한 달 적분 실험은 각각 169분과 205분이 소요되었다. 저해상도인 3.75° ×2.5° 와 70층 N48L70 해상도에 대해 AMIP 한달 적분은 252코어를 사용하여 33분이 소요되는 적분 성능을 보였다. 또한 적분을 위해 사용된 코어의 개수에 비례하여 적분 성능이 향상되었다. 성능 평가 외에 29년 간의 장기 적분을 수행하여 과거 지상 2-m 온도와 강수 강도를 ERA5 재분석자료와 비교하였고, 해상도에 따른 차이도 정성적으로 살펴보았다. 재분석자료와 비교할 때, 공간 분포가 유사하였고, 해상도와 대기-해양 접합에 따라 모의 결과에서 차이가 나타났다. 본 연구를 통해 슈퍼컴퓨터가 아닌 개별 연구자의 고성능 리눅스 클러스터 상에서도 UM이 성공적으로 구동됨을 확인하였다.
중중급성호흡기증후군(SARS, Severe Acute Respiratory Syndrome)은 전 세계적으로 알려진 바가 없었던 신종 급성 전염성 질환으로써, 2003년 아시아로부터 북미와 유럽지역까지 빠른 속도로 전파되어 나간 이후로부터 많은 과학자들의 연구의 대상이 되어오고 있다. 계통발생학적인 관점에서 SARS 바이러스는 Coronavirus 속에 속하는 것으로 알려져 있으나, 전체적인 유전정보 면에서는 다른 코로나바이러스들에 비하여 진화상으로 보존된 부분들이 현저하게 적은 경향을 나타낸다. 자연계에서의 SARS 코로나바이러스(SARS-CoV)의 숙주생물종에 대해서는 아직까지도 명확히 알려지지 않고 있다. 본 연구에서는 SARS-CoV의 유전서열들을 대상으로 다중서열정렬법, 계통발생학적 분석기법 및 다변량 통계분석법 등과 같은 바이오인포매틱스 분석기법들을 활용하여 이 바이러스의 유전정보 패턴을 분석하였다. Relative synonymous codon usage(RSCU)값을 포함하는 여러 유전정보 파라미터들은 Coronavirus와 Lentivirus 속과 Orthomyxoviridae과로부터 수집된 총 30,305개의 암호화 서열들로부터 계산이 되었으며 이 모든 계산은 KISTI 슈퍼컴퓨팅센터의 SMP 클러스터 상에서 수행되었다. 분석 결과, SARS-CoV는 feline 코로나바이러스와 매우 유사한 RSCU 패턴을 나타내었는데, 이것은 기존에 보고되었던 혈청학적인 연구결과와 일치하는 결과였다. 또한 SARS-CoV와 human immunodeficiency virus 및 influenza A virus는 공통적으로 각각이 속한 속이나 과내에서 상대적으로 낮은 RSCU bias를 나타내어서 이와 같은 현상이 이들 바이러스들이 종 간 장벽을 뛰어넘어 전파되는 과정에 영향을 미쳤을 가능성을 시사하였다. 결론적으로 이와 같은 바이오인포매틱스 분석기법들을 활용한 대용량의 유전정보 분석은 유전체 역학 연구에 효과적으로 사용될 수 있을 것으로 기대된다.
컴퓨팅 알고리즘의 병렬화는 계산량 및 데이터의 증가와 더불어 필요성이 꾸준히 제기되어 왔다. 그러나 병렬처리에 사용되는 컴퓨터는 1990년대 중반까지 주로 슈퍼컴퓨터로서 가격, 사용법 등 일반인이 쉽게 접근하지 못할 요소가 많았다. 1990년대 후반에 병렬 처리를 위한 PC-cluster라는 새로운 개념이 나타나게 되었고, 아직 설치와 사용법에서 개선될 여지가 많이 있음에도 불구하고 값싼 비용으로 고성능의 계산 능력을 원하는 일반 사용자에게 PC-cluster는 가장 뛰어난 대안으로 떠오르고 있다. GIS 데이터의 매핑은 축척변환(scale), 벡터에서 레스터로의 변환, DXF 자료구조에서 내부 자료구조로의 변환, 두 지역이 연결되었을 때 가장자리 데이터의 보정, 개체선택, Join, Cut의 처리 등 병렬 처리에 적합한 여러 가지 특성을 가지고 있다. 따라서 이들을 K-clustering으로 구현할 경우 값싼 비용으로 실시간 처리를 할 수 있어 성능과 비용의 모든 면에서 만족할 만한 결과를 얻을 수 있을 것이다. 본 논문에서는 병렬처리 및 PC-clustring, 그리고 이들을 이용하기 위한 라이브러리 및 도구에 대한 소개와, 이들이 매핑에 어떻게 적용시킬 수 있는 가를 살펴보았다. 또한 매핑의 여러 기능을 위한 병렬 프로그램을 개발하였고, 실험 결과 노드의 수에 따라 모든 기능에서 성능이 거의 선형적으로 향상됨을 보여주고 있다.
모바일 기기 사용이 급증함에 따라 모바일환경에서 이루어지는 Peer-to-Peer(P2P)방식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 기존의 모바일환경에서의 P2P방식이 지닌 peer들 사이의 broadcasting 방식인 'flooding'의 문제점을 보완하고, 새로운 routing table을 구축하기 위해 peer들을 2개의 계층으로 구분하였다. 즉, peer 들을 super peer들과 각 super peer에 의해 관리되는 sub-peer들로 구분하였다. 파일의 탐색과 전송은 Super peer들이 관리하므로, 기존의 불필요한 multi-broadcasting 방식을 피할 수 있다. 본 논문에서는 super peer의 개념을 이용한 두 가지의 모바일 P2P 시스템을 제안한다. 첫 번째 시스템은 영역을 일정한 크기로 나누어 각각의 구역마다 super peer를 가지도록 한다. 두 번째 시스템은 자신에게 연결된 이웃 peer의 수를 계산하여 가장 많은 이웃 peer를 가진 peer부터 순서대로 super peer가 되도록 한다. 본 논문에서 제안된 P2P 시스템들은 이중 계층구조로 peer들을 구분하여, 될 수 있는 대로 상충의 super peer들 사이의 메시지 교환이 이루어지게 함으로써 broadcasting을 피한다. 본 논문에서 제안한 시스템들의 성능 향상을 확인하기 위하여, 메시지의 수를 측정하는 실험을 하였으며, 그 결과 본 논문에서 제안한 시스템들이 기존의 시스템보다 평균 $1.2{\sim}1.6$배 향상되었음을 보였다.
하드웨어의 성능 및 컴퓨팅 기술의 발전 덕분에 기후환경 변화를 대비하기 위해 기후예측 모델 또한 발전하고 있다. 한국 기상청은 GloSea6를 도입하여 슈퍼컴퓨터를 이용하여 기상 예측을 하고있으며, 각 대학 및 연구 기관에서는 중소규모 서버에서 사용하기 위해 저해상도 결합모델인 Low-GloSea6를 사용하여 기상 연구에 활용하고 있다. 본 논문에서는 중소규모 서버에서의 기상 연구의 원활한 연구를 위해 Low-GloSea6의 Intel VTune Profiler를 사용한 분석을 진행하였으며 1125.987초의 CPU Time을 수행하는 대기모델의 tri_sor_dp_dp 함수를 Hotspot으로 검출하였다. 수치적 연산을 진행하는 기존 함수에 머신러닝 기법의 하나인 비선형 회귀모델을 적용 및 비교하여 머신러닝 적용 가능성을 확인하였다. 기존 tri_sor_dp_dp 함수의 실제 연산되는 값인 1e-3 ~ 1e-20의 범위를 가지는 Output Data인 변수 "Px"를 기준으로 평가하였을때 K-최근접 이웃 회귀 모델은 MAE가 1.3637e-08, SMAPE가 123.2707%로 가장 우수하게 나타났으며 RMSE의 경우 Light Gradient Boosting Machine 회귀 모델이 2.8453e-08로 가장 우수한 성능을 보이는 것으로 측정되었다. 따라서 Low-GloSea6 수행 과정 중 tri_sor_dp_dp 함수의 데이터를 추출 후 비선형 회귀 모델을 적용한 결과로 기존의 tri_sor_dp_dp 함수의 수치적 연산 값과 K-최근접 이웃 회귀 모델을 비교하였을 때 SMAPE가 123.2707%의 오차가 발생하는 것으로 측정되어 기존 모듈의 대체 가능성이 있다는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.