• Title/Summary/Keyword: 슈퍼픽셀 세그멘테이션

Search Result 3, Processing Time 0.015 seconds

Hierarchical Merging of Adjacent Subtrees with Superpixels Using Delaunay Triangulation (들로네 삼각화를 활용한 계층적 슈퍼픽셀 통합)

  • Baek, Eu-Tteum;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.198-199
    • /
    • 2016
  • 컴퓨터 비젼 분야에서 이미지 세그멘테이션은 객체 분리, 객체 추적, 의학 영상처리 등 다양한 분야에서 사용된다. 이전의 이미지 세그멘테이션은 사람의 개입이 없이 정확한 객체를 분리하지 못한다는 단점이 있다. 본 논문은 인접한 슈퍼픽셀을 트리를 활용하여 개층적으로 슈퍼픽셀을 통합하는 새로운 세그멘테이션 방법을 소개한다. 제안한 알고리즘을 수행하기 위해 기존의 슈퍼 픽셀 알고리즘을 사용하여, 각 슈퍼픽셀의 센터를 노드로 설정하고 들로네 삼각화를 수행한다. 각각의 인접한 노드는 순차적으로 유사도 측정하여 슈퍼픽셀을 통합한다. 실험 결과를 통해 제안한 방법이 과분할 세그멘테이션을 제거하였으며 영상의 중요한 정보를 잘 보존하는 것을 확인하였다.

  • PDF

Indoor Space Recognition using Super-pixel and DNN (DNN과 슈퍼픽셀을 이용한 실내 공간 인식)

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, we propose an indoor-space recognition using DNN and super-pixel. In order to recognize the indoor space from the image, segmentation process is required for dividing an image Super-pixel is performed algorithm which can be divided into appropriate sizes. In order to recognize each segment, features are extracted using a proposed method. Extracted features are learned using DNN, and each segment is recognized using the DNN model. Experimental results show the performance comparison between the proposed method and existing algorithms.

Inside Wall Frame Detection Method Based on Single Image (단일이미지에 기반한 내벽구조 검출 방법)

  • Jeong, Do-Wook;Jung, Sung-Gi;Choi, Hyung-Il
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In this paper, we are proposing improved vanishing points detection and segments labeling methods for inside wall frame detection from indoor image of a piece of having a colour RGB. A lot of research related to recognizing the frame of artificial structures from the image is being performed due to increase in demand for AR technology. But detect the inside wall frame in indoor images have many objects that caused the occlusion is still a difficult issue. Inner wall frame detection methods are usually segment labeling methods and detect vanishing point methods are used together. In order to improve the vanishing point detection method we proposed using inner wall orthogonality which forms the cube. Also we proposed labeling method using tree based learning and superpixel based segmentation method for labelingthe segments in indoor images. Finally, in experiments have shown improved results about inside wall frame detection according to our methods.