• 제목/요약/키워드: 슈퍼픽셀 세그멘테이션

검색결과 3건 처리시간 0.018초

들로네 삼각화를 활용한 계층적 슈퍼픽셀 통합 (Hierarchical Merging of Adjacent Subtrees with Superpixels Using Delaunay Triangulation)

  • 백으뜸;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.198-199
    • /
    • 2016
  • 컴퓨터 비젼 분야에서 이미지 세그멘테이션은 객체 분리, 객체 추적, 의학 영상처리 등 다양한 분야에서 사용된다. 이전의 이미지 세그멘테이션은 사람의 개입이 없이 정확한 객체를 분리하지 못한다는 단점이 있다. 본 논문은 인접한 슈퍼픽셀을 트리를 활용하여 개층적으로 슈퍼픽셀을 통합하는 새로운 세그멘테이션 방법을 소개한다. 제안한 알고리즘을 수행하기 위해 기존의 슈퍼 픽셀 알고리즘을 사용하여, 각 슈퍼픽셀의 센터를 노드로 설정하고 들로네 삼각화를 수행한다. 각각의 인접한 노드는 순차적으로 유사도 측정하여 슈퍼픽셀을 통합한다. 실험 결과를 통해 제안한 방법이 과분할 세그멘테이션을 제거하였으며 영상의 중요한 정보를 잘 보존하는 것을 확인하였다.

  • PDF

DNN과 슈퍼픽셀을 이용한 실내 공간 인식 (Indoor Space Recognition using Super-pixel and DNN)

  • 김기상;최형일
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.43-48
    • /
    • 2018
  • 본 논문은 DNN(Deep Neural Network)와 슈퍼픽셀을 이용한 실내 공간 인식 알고리즘을 제안한다. 영상으로부터 실내 공간 인식을 위해 우선 영상 분할을 위한 세그멘테이션 프로세스가 필요하다. 이를 위해 본 논문에서는 적당한 크기로 나눌 수 있는 슈퍼 픽셀 알고리즘을 이용해 세그멘테이션을 수행한다. 각 세그먼트를 인식하기 위해 세그먼트마다 제안하는 방법을 이용하여 특징을 추출한다. 추출된 특징들을 DNN을 이용하여 학습하고, 학습으로부터 추출된 DNN모델을 이용하여 각 세그먼트를 인식한다. 실험 결과를 통해 제안하는 방법과 기존의 알고리즘과의 성능 비교 분석을 한다.

단일이미지에 기반한 내벽구조 검출 방법 (Inside Wall Frame Detection Method Based on Single Image)

  • 정도욱;정성기;최형일
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.43-50
    • /
    • 2017
  • 본 논문에서는 한 장의 실내이미지에서 내벽구조 검출을 위한 개선된 소실점 검출방법과 세그먼트 레이블링 방법을 제안한다. AR 기술 수요의 증가로 이미지로부터 건축물의 구조를 인식하는 것과 관련된 연구가 많이 이루어 지고 있다. 그러나 폐색을 발생시키는 객체들이 많은 실내 이미지에서 실내 내부 구조를 인식하는 것은 여전히 어려운 문제이다. 소실점 검출 방법을 개선하기 위하여 육면체를 이루는 실내 내벽들 사이의 직교성을 이용하는 방법을 제안하였다. 또한 실내 이미지 내의 세그먼트들을 레이블링 하기 위하여 슈퍼픽셀 기반의 군집화 방법과 트리기반 학습기를 통한 레이블링 방법을 제안하였다. 마지막으로 실험 결과에서 제안한 방법들에 의하여 실내 구조 검출 결과가 개선됨을 보였다.