• 제목/요약/키워드: 슈라우드 캐비티

검색결과 2건 처리시간 0.015초

축류압축기 슈라우드 캐비티내의 누수유동 경로에 대한 연구 (Effects of the Leakage Tangential Velocity on the Leakage Flow Path in Shrouded Axial Compressor Cascades)

  • 손대웅;김동범;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.311-317
    • /
    • 2005
  • Measurements of the leakage flow in the shrouded cavity were performed in axial compressor cascades at $Re=2.6{\times}10^5$. This paper describes the effects of the leakage flow tangential velocity on kinematics of the leakage flow in the shrouded cavity and consequent overall loss and exit flow turning at stator blade row downstream. Flow data and flow visualization images consistently indicate that leakage flow circumferentially migrates 2, 4 and 5 blade passages in the direction of rotation for ${\upsilon}_y/c=0.09$, 0.35 and 0.45, respectively where ${\upsilon}_y$ is the leakage tangential velocity and c is the mainstream velocity. The leakage flow contracts to a jet across the seal-tooth resulting in an increase in the leakage axial velocity-doubling the leakage axial velocity in upstream cavity compared to that in the downstream cavity. Consequently, two flow regions are distinguished before and after the seal-tooth. As increasing the leakage tangential velocity, the overall loss downstream of stator blade row decreases and the exit flow turning in the range of span. from the hub endwall to 15% increases while the decreases in the flow turning from 15% to 30% span is observed.

  • PDF

압축기 슈라우드 캐비티에 기인한 손실 해석 (Effects of shrouded cavity on loss in axial compressor cascade)

  • 이재석;김진희;김동범;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.427-433
    • /
    • 2004
  • The effects of flow interaction between mainstream and shrouded cavity leakage flow in an axial-flow compressor on aerodynamic losses are experimentally and numerically examined. A fraction of mainstream is Ingested in the downstream cavity and travelled in the shrouded cavity along the direction opposite to the mainstream. This leakage flow is caused by adverse pressure gradient along the blade passage. Then it is entrained through the upstream cavity near mid-pitch and interacts with the mainstream. As a result, the convection flow angle with respect to the blade chord is reduced i.e. underturning This underturned flow results in an increase in size of secondary flow formed near the suction side of the blade as well as its magnitude. Consequently, this causes pronounced increase in overall aerodynamic losses compared to the blading without shrouded cavity, leading to $9\%$ decrease in pressure rise through the single stage of the stators.

  • PDF