• Title/Summary/Keyword: 순회 세일즈맨 문제

Search Result 4, Processing Time 0.018 seconds

Multi-Dimensional Traveling Salesman Problem Scheme Using Top-n Skyline Query (Top-n 스카이라인 질의를 이용한 다차원 외판원 순회문제 기법)

  • Jin, ChangGyun;Oh, Dukshin;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The traveling salesman problem is an algorithmic problem tasked with finding the shortest route that a salesman visits, visiting each city and returning to the started city. Due to the exponential time complexity of TSP, it's hard to implement on cases like amusement park or delivery. Also, TSP is hard to meet user's demand that is associated with multi-dimensional attributes like travel time, interests, waiting time because it uses only one attribute - distance between nodes. This paper proposed Top-n Skyline-Multi Dimension TSP to resolve formerly adverted problems. The proposed algorithm finds the shortest route faster than the existing method by decreasing the number of operations, selecting multi-dimensional nodes according to the dominance of skyline. In the simulation, we compared computation time of dynamic programming algorithm to the proposed a TS-MDT algorithm, and it showed that TS-MDT was faster than dynamic programming algorithm.

A Comparative Study of Genetic Ordering for the Sequential Ordering Problem (Sequential Ordering Problem을 위한 유전 연산자의 비교)

  • 이혜리;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.42-44
    • /
    • 1998
  • Sequential Ordering Problem(SOP)은 여러 개의 도시를 방문함에 있어 '어떤 도시를 다른 도시보다 먼저 방문해야 한다'는 선행제약이 있는 비대칭 순회 세일즈맨 문제(Traveling Salesman Problem)로서, 주어진 선행 제약을 만족하면서 모든 도시를 한번씩만 경유하는 가장 짧은 경로를 찾는 NP-Complete에 속하는 문제이다. 유전자 알고리즘은 SOP와 같은 조합 최적화문제에 대해 유용한 메타휴리스틱의 한가지이다. 본 논문에서는 SOP에 유전자 알고리즘을 적용할 때, 선행제약을 만족하는 해를 생성하는데 사용할 수 있는 선행관계유지 유전 연산자를 소개하고 이를 비교한다. 비교하는 유전 연산자는 선행관계유지 교차연산자, 선행관계유지 순서기반 교차연산자, 최대부분순서/임의삽입 연산자, 선행관계유지 간선재결합 연산자이다.

  • PDF

Task Assignment of Multiple UAVs using MILP and GA (혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당)

  • Choi, Hyun-Jin;Seo, Joong-Bo;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.427-436
    • /
    • 2010
  • This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.

An Efficiency Analysis on Mutation Operation with TSP solved in Genetic Algorithm

  • Yoon, Hoijin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.55-61
    • /
    • 2020
  • Genetic Algorithm(GA) is applied to a problem that could not figure out its solution in a straightway. It is called as NP-hard problem. GA requires a high-performance system to be run on since the high-cost operations are needed such as crossover, selection, and mutation. Moreover, the scale of the problem domain is normally huge. That is why the straightway cannot be applied. To reduce the drawback of high-cost requirements, we try to answer if all the operations including mutation are necessary for all cases. In the experiment, we set up two cases of with/without mutation operations and gather the number of generations and the fitness of a solution. The subject in the experiment is Travelling Salesman Problem(TSP), which is one of the popular problems solved by GA. As a result, the cases with mutation operation are not faster and the solution is fitter than the case with mutation operation. From the result, the conclusion is that mutation operation does not always need for a better solution in a faster way.