• Title/Summary/Keyword: 순환 양액재배

Search Result 65, Processing Time 0.022 seconds

Development of Nutrient Solution for Cucumber Substrate Culture in a Closed Growing System (오이 순환식 고형배지경에 적합한 배양액개발)

  • 이용범;노미영;김회상;이경복;최은영
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.10a
    • /
    • pp.67-70
    • /
    • 1996
  • 오이의 양액재배는 초기에 암면을 중심으로 한 배지경에서 최근 펄라이트를 주 배지로 한 배지경의 면적이 급속히 증가하고 있다. 이들 고형배지를 이용한 양액재배에 사용한 배양액은 크게 2종류로 구분할 수 있다. 하나는 일렬의 야먀자끼씨의 오이 배양액으로 이 배양액은 담액수경하에서 개발된 배양액으로 순수 수경재배에 적합하다고 할 수 있다. 다른 하나는 네델란드 온실작물연구소(PBG)의 오이배지경용 배양액이라 할수 있다. (중략)

  • PDF

Effects of Nutrient Solution Concentrations on Turnip(Brassica raps L.) Growth (순무(Brassica rapa L.)의 생육에 미치는 배양액농도의 영향)

  • 박권우;강호민;박용건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.10a
    • /
    • pp.56-57
    • /
    • 1996
  • 순무는 근채류 중 20일 무 다음으로 생육기간이 잘아 양액재배시 순환이 빨라 공장적으로 생산될 수 있는 작물이다. 현재 유럽과 일본 등지에서는 상당한 수요가 있으나 우리나라에서는 강화 등지에서 소규모로 재배되기 시작한 실정이다. 그러나 서양채소에 대한 관심의 증가와 함께 국내에서도 그 수요가 증가될 것이라고 보인다. 이에 순무의 양액재배에 적합한 양액의 농도를 알아보고자 본 실험을 수행하였다. (중략)

  • PDF

The Effect of the Root Intercept Film in the Medium on the Growth and Yield of Hydroponically Grown Cucumber (펄라이트경에서 배지내 격막이 오이의 생육 및 수량에 미치는 영향)

  • 김기덕;이재욱;이응호;문보흠
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.106-109
    • /
    • 2002
  • 우리나라에 널리 보급ㆍ이용되고 있는 양액재배방식중 하나는 펄라이트경이며 대부분 비순환식이다. 펄라이트 재배에서의 적정 양액조성, 양액관리기술 및 배지내 환경조건에 관한 연구가 꾸준히 이루어지고 있다. 한편 적정 수분관리는 작물의 생장뿐만 아니라 경제적, 환경적 측면에서 대단히 중요하다. 따라서 생육단계 및 재배시기별로 급액량을 달리하고 있지만 아직은 비효율적인 측면이 있어 양액소모량이 더 많다. (중략)

  • PDF

Effect of the Particle Size of Perlite and Irrigation Amount on the Growth, Root Activity and Mineral Contents of Tomato in a Recycling System (순환식 양액재배에서 펄라이트배지의 입자 크기 및 양액공급량이 토마토의 생육, 근활력 및 무기양분 함량에 미치는 영향)

  • 강경희;권기범;최영하;이한철
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2003
  • The effect of the particle size of perlite and irrigation amount on the growth, root activity and mineral competition of tomato was investigated in a recycling system. The particle sizes used were small (SPP, øl∼2 mm), medium (MPP, ø2∼3 mm), (LPP. ø4∼5 mm). Plant height, fresh weight and dry weight of tomato at the earlier growth stage were good at 3.0 L/day in MPP and LPP, but these were not significantly affected by irrigation amount in MPP, Fruit number, weight and yield increased at 1.5 L/day in SPP and 3.0 L/day at MPP or LPP, Deformed fruits tended to increase at higher irrigation amounts regardless of particle size. Root activity increased with increasing particle size with higher irrigation amount during early stage after transplanting, but remarkably decreased at 3.0 L/day in SPP as compared with the others at 100 days. Mineral contents of plants after harvest were higher at MPP and LPP than SPP, but were highest at 3.0 L/day in LPP. In conclusion, it was regarded that tomato growth in a recycling system was optimal at MPP or LPP with irrigation amount of B.0 L/day.

Development of an Aeroponics-NFT(Nutrient Film Technique) Nutriculture System Using Microcomputer for Greenhouse Melon (마이크로컴퓨터를 이용한 온실멜론의 분무경 -박막순환식 양액재배 시스템 개발)

  • 유수남;서상룡;정종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.167-178
    • /
    • 1998
  • An Aero-NFT nutriculture system using microcomputer for cultivation of greenhouse melon was developed and the performance of the system was evaluated through experiments. The system could control temperature, EC and pH of the nutrient solution within the error ranges of $\pm$ 0.2$^{\circ}C$, $\pm$ 0.2 mS/cm, $\pm$ 0.1 pH, respectively. The results of cultivation experiment showed that temperature, EC and pH of the nutrient solution were generally controlled within the setting ranges during cultivation period. The growth results were good until pinching, but the fruit quality of melons was not high except sweetness and shape. To optimize performance of the system, more techlical information for nutriculture of greenhouse melon was needed.

  • PDF

Reusing Techniques of Nutrient Solution for Recycling Hydroponic Culture of Lettuce (순환식 상추 양액재배시 양액재활용 기술)

  • 이성재;서명훈;이상우;심상연;이수연
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.172-182
    • /
    • 1999
  • Leaf lettuce(Lacaug sativa L.) was cultivated in deep flow culture to investigate growth and yield in relation to different reusing method of nutrient solution after once cultivation. Five different treatments were allocated to the nutrient solutions - Control(total renewal of solution), NSS(nutrient solution supplement), U control, NSAC(nutrient solution analysis and compensation), NSAC and Humus supply(NSAC with supply of Humus). The pH of solution was kept stable below 7.0 during 4 successive culture in NSAC and NSAC and Humus supply. U was sharply declined in NSS as the number of cultivation was increased. Gmwth and yield of NSAC was similar to those of Control because nutrient elements were kept the balance to the better growth, while the lettuce grown in NSS and EC control was shown lower growth rate. In the nutrient solutions, Content of N $O_3$-N and N $H_4$-N were remarkably decreased after the cultivation in all treatments. Ca and Mg were shown to be accumulated in nutrient solution regardless of culture times and treatments. After the first culture in NSAC and Humus supply, total N and P$_2$ $O_{5}$ content in leaves were lower than any other treatments, but Ca content was higher. Those were not significant as following cultures, and no significant difference of K and Mg content were shown among the treatments.

  • PDF

Changes in Ion Balance and Individual Ionic Contributions to EC Reading at Different Renewal Intervals of Nutrient Solution under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Peppers (Capsicum annum L. 'Fiesta') (EC 기준 파프리카 순환식 수경재배에서 양액 교체 주기에 따른 양액 중의 이온 균형 및 각 이온의 EC 기여도 변화)

  • Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • Individual ion concentrations and ionic contributions to EC reading in the circulated nutrient solution are the important factors to be considered for stable EC-based closed-loop soilless culture. This study was conducted to determine appropriate ion-analysis intervals of the circulated nutrient solutions based on ion concentration, ion balance, and ion electrical conductivity under different renewal intervals in EC-based nutrient control systems for sweet peppers (Capsicum annum L. 'Fiesta') in early growth stage. Average node numbers of the plants were 13 and 18 when the experiment started and finished, respectively, and three plants were grown in each rockwool slab. Four different renewal intervals of circulated nutrient solutions such as 1, 2, 3, and 4 weeks were used as treatment. Nutrient solutions were supplied to the plants based on integrated radiation. Drainage was collected into drain tanks after irrigation ended in the day and then mixed with fresh water until the EC reaches 2.69 $dS{\cdot}m^{-1}$. The replenished nutrient solution was supplied to the plants in the next day. Ion concentrations of the individual ions periodically analyzed in the circulated nutrient solutions showed no significant differences among the treatments during the experimental period. Ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $NO_3{^-}$, ${SO_4}^{2-}$, ${PO_4}^{3-}$, and $Cl^-$ varied within 5-8, 11-14, 2.0-2.7, 0.5-0.6, 14-19, 4-5, 1-4, and 0.3-0.5 $meq{\cdot}L^{-1}$, respectively. Ion balance showed a consistent tendency over all the treatments and especially $K^+$ : $Ca^{2+}$ and ${SO_4}^{2-}$ : ${PO_4}^{3-}$ played great roles in the cation and anion balances in the nutrient solutions, respectively. Activity coefficients of ions such as $K^+$, $NO_3{^-}$, and $H_2PO_4{^-}$ varied within 0.8-0.9 and those of $Ca^{2+}$, $Mg^{2+}$, ${SO_4}^{2-}$ varied within 0.5-0.6, showing little changes with time. Ionic contributions of $K^+$ and $NO_3{^-}$ to EC reading were the greatest followed by $Ca^{2+}$, ${SO_4}^{2-}$, and $Mg^{2+}$ in the order. From the results, we thought that allowable ranges in ion concentration, ion balance, and subsequent individual ionic contributions to EC reading would be obtained within 4-week renewal interval of nutrient solution in EC-based closed-loop soilless culture for sweet pepper plants.

Thermal Characteristics of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환형 무토양재배시스템 양액 및 배지의 열적 특성)

  • 손정익;장진택;이병일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.05a
    • /
    • pp.59-61
    • /
    • 1997
  • 무토양재배시스템은 가급적 경량화이면서 집약적인 형태를 가지며, 환경보존차원을 위하여 밀폐형 순환식 재배시스템이 중시되고 있다. 무토양재배시스템은 DFT에서 NFT나 고형배지로 갈수록 외기의 환경변화에 대하여 비교적 근권부근의 환경변화가 크기 때문에 노출되어 있는 뿌리에 영향을 미치는 것으로 사료된다. (중략)

  • PDF

A Design and Implementation of Control and Management System for Water Culture Device using Solar Tracking Method (광원 트래킹 기법을 이용한 수경재배기 제어 관리 시스템 설계 및 구현)

  • Park, Sung-Kyun;Jung, Se-Hoon;Oh, Min-Joo;Sim, Chun-Bo;Park, Dong-Gook;You, Kang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.231-242
    • /
    • 2014
  • It is throwing the spotlight on the cultivation crops about high quality crops and productivity improvement per unit area because of rapid climate change caused by global warming. Therefore, we propose a water culture management of circulation nutrient method control system applies to solar tracking method not using traditional method of deep flow technique and artificial light source. We design it in the form of the circulation nutrient method in waterway of a certain amount of nutrient solution and water flowed into the way of circular. In addition, we design a multistage structure in pyramid shape which be possible continuous photosynthesis action to crops of water culture bottom part. Also, solar tracking method is designed five sensor method of center hole sensor method for tracking shadow of solar light not using traditional two hole, four hole sensor method. Finally, through the water culture device applies to solar light tracking method was not introduced in existing study yet, we can reduce growth speed of crops which be possible continuous photosynthesis action to crops. Moreover, We can expect high productivity of per unit area which be possible all crops can be offered growth environment of same type by using form of pyramid shape of multistage structure without top or bottom part.

An Analysis Study for Optimal Uptake of Nutrient Solution Based on Multiple Linear Regression Model in Strawberry Hydroponic Environments (딸기 수경 재배 환경에서의 다중 선형 회귀 모델 기반의 양액 적정 흡수량 분석 연구)

  • Lim, Jong-Hyun;Lee, Myeong-Bae;Cho, Hyun-Wook;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong-Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.578-580
    • /
    • 2019
  • 우리 나라의 딸기 수경재배 면적은 2002년 5ha로 시작해서, 2007년에는 84ha, 2012년에는 317ha, 2017년에 1,575ha로 매년 30% 이상 급속하게 성장하고 있다. 이런 경향은 수경재배가 토양재배보다 작업이 용이하여 노동시간이 절약되며, 수량을 더 많이 생산할 수 있기 때문이다. 하지만, 공급양액을 배액으로 흘려버리는 비순환식 수경재배 방식이 증가 하면서 환경오염을 유발시킬 뿐만 아니라 수경재배 운영비용의 증가를 가져오고 있다. 본 논문은 작물 생장에 최적화된 양액공급을 위해 상관관계 분석 및 다중 선형 회귀 모델 기반의 딸기 수경재배 환경에서의 최적 양액 흡수량을 분석하고 추정해 보았다. 분석 결과, 수경재배 환경정보(일사량, 온도, 습도, CO2 등)를 대상으로 일사량 및 온도가 습도 및 CO2에 비해 딸기재배를 위한 양액 흡수량에 더 큰 영향을 주는 것으로 분석되었고, 다중 선형 회귀 모델을 통한 회귀식의 R-Square값은 0.358으로 나타났다.