• Title/Summary/Keyword: 순환신경망 모델

Search Result 207, Processing Time 0.026 seconds

Proposal of a Hypothesis Test Prediction System for Educational Social Precepts using Deep Learning Models

  • Choi, Su-Youn;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.37-44
    • /
    • 2020
  • AI technology has developed in the form of decision support technology in law, patent, finance and national defense and is applied to disease diagnosis and legal judgment. To search real-time information with Deep Learning, Big data Analysis and Deep Learning Algorithm are required. In this paper, we try to predict the entrance rate to high-ranking universities using a Deep Learning model, RNN(Recurrent Neural Network). First, we analyzed the current status of private academies in administrative districts and the number of students by age in administrative districts, and established a socially accepted hypothesis that students residing in areas with a high educational fever have a high rate of enrollment in high-ranking universities. This is to verify based on the data analyzed using the predicted hypothesis and the government's public data. The predictive model uses data from 2015 to 2017 to learn to predict the top enrollment rate, and the trained model predicts the top enrollment rate in 2018. A prediction experiment was performed using RNN, a Deep Learning model, for the high-ranking enrollment rate in the special education zone. In this paper, we define the correlation between the high-ranking enrollment rate by analyzing the household income and the participation rate of private education about the current status of private institutes in regions with high education fever and the effect on the number of students by age.

Vulnerability Assessment of the Climate Change on the Water Environment of Juam Reservoir (기후변화에 따른 주암호 수환경 취약성 평가)

  • Yoon, Sung Wan;Chung, Se Woong;Park, Hyung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.519-519
    • /
    • 2015
  • 2007년 발간된 IPCC의 4차 평가보고서에서 자연재해, 환경, 해양, 농업, 생태계, 보건 등 다양한 부분에 미치는 기후변화의 영향에 대한 과학적 근거들이 제시되면서 기후변화는 현세기 범지구적인 화두로 대두되고 있다. 또한, 기후변화에 의한 지구 온난화는 대규모의 수문순환 과정에서의 변화들과 연관되어 담수자원은 기후변화에 대단히 취약하며 미래로 갈수록 악영향을 받을 것으로 6차 기술보고서에서 제시하고 있다. 특히 우리나라는 지구온난화가 전 지구적인 평균보다 급속하게 진행될 가능성이 높기 때문에 기후변화에 대한 담수자원 취약성이 더욱 클 것으로 예상된다. 따라서 지표수에 용수의존도가 높은 우리나라의 댐 저수지를 대상으로 기후변화에 따른 수환경 변화의 정확한 분석과 취약성 평가는 필수적이다. 본 연구에서는 SRES A1B 시나리오를 적용하여 기후변화가 주암호 저수지의 수환경 변화에 미치는 영향을 분석하였다. 지역스케일의 미래 기후시나리오 생산을 위해 인공신경망(Artificial Neural Network.,ANN)기법을 적용하여 예측인자(강우, 상대습도, 최고온도, 최저온도)에 대해 강우-유출모형에 적용이 가능한 지역스케일로 통계적 상세화를 수행하였으며, 이를 유역모델에 적용하여 저수지 유입부의 유출량 및 부하량을 예측하였다. 유역 모델의 결과를 토대로 저수지 운영모델에 저수지 유입부의 유출량을 적용하여 미래 기간의 방류량을 산정하였으며, 최종적으로 저수지 모델에 유입량, 유입부하량 및 방류량을 적용하여 저수지 내 오염 및 영양물질 순환 및 분포 예측을 통해서 기후변화가 저수지 수환경에 미치는 영향을 평가하였다. 기후변화 시나리오에 따른 상세기 후전망을 위해서 기후인자의 미래분석 기간은 (I)단계 구간(2011~2040년), (II)단계 구간(2041~2070년), (III) 단계 구간(2071~2100년)의 3개 구간으로 설정하여 수행하였으며, Baseline인 1991~2010년까지의 실측값과 모의 값을 비교하여 검증하였다. 강우량의 경우 Baseline 대비 미래로 갈수록 증가하는 것으로 전망되었으며, 2011년 대비 2100년에서 연강수량 6.4% 증가한 반면, 일최대강수량이 7.0% 증가하는 것으로 나타나 미래로 갈수록 집중호우의 발생가능성이 커질 것으로 예측되었다. 유역의 수문 수질변화 전망도 강수량 증가의 영향으로 주암댐으로 유입하는 총 유량이 Baseline 대비 증가 하였으며, 유사량 및 오염부하량도 증가하는 것으로 나타났다. 저수지 수환경 변화 예측결과 유입량이 증가함에 따라서 연평균 체류시간이 감소하였으며, 기온 및 유입수온 상승의 영향으로 (I)단계 구간대비 미래로 갈수록 상층 및 심층의 수온이 상승하는 것으로 나타났다. 연중 수온성층기간 역시 증가하는 것으로 나타났으며, 남조류는 (I)단계 구간 대비 (III)단계 구간으로 갈수록 출현시기가 빨라지며 농도 역시 증가하였다. 또한 풍수년, 평수년에 비해 갈수년에 남조류의 연평균농도 상승폭과 최고농도가 크게 나타나 미래로 갈수록 댐 유입량이 적은 해에 남조류로 인한 피해 발생 가능성이 높아질 것으로 예상된다.

  • PDF

Sound event detection model using self-training based on noisy student model (잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지)

  • Kim, Nam Kyun;Park, Chang-Soo;Kim, Hong Kook;Hur, Jin Ook;Lim, Jeong Eun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.479-487
    • /
    • 2021
  • In this paper, we propose an Sound Event Detection (SED) model using self-training based on a noisy student model. The proposed SED model consists of two stages. In the first stage, a mean-teacher model based on an Residual Convolutional Recurrent Neural Network (RCRNN) is constructed to provide target labels regarding weakly labeled or unlabeled data. In the second stage, a self-training-based noisy student model is constructed by applying different noise types. That is, feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise are used here. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge Task 4. The experiments show that the single model and ensemble model of the proposed SED based on the noisy student model improve F1-score by 4.6 % and 3.4 % compared to the top-ranked model in DCASE 2020 challenge Task 4, respectively.

A Study on Automatic Comment Generation Using Deep Learning (딥 러닝을 이용한 자동 댓글 생성에 관한 연구)

  • Choi, Jae-yong;Sung, So-yun;Kim, Kyoung-chul
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.83-92
    • /
    • 2018
  • Many studies in deep learning show results as good as human's decision in various fields. And importance of activation of online-community and SNS grows up in game industry. Even it decides whether a game can be successful or not. The purpose of this study is to construct a system which can read texts and create comments according to schedule in online-community and SNS using deep learning. Using recurrent neural network, we constructed models generating a comment and a schedule of writing comments, and made program choosing a news title and uploading the comment at twitter in calculated time automatically. This study can be applied to activating an online game community, a Q&A service, etc.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence (인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발)

  • Jo, Ha-Nui;Park, Jisu;Yun, Yongju
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms (기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구)

  • Choi, Garam;Kim, Han-Gook;Kim, Kwang-Hoon;Kim, You-eil;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.99-120
    • /
    • 2017
  • In order to develop a semiautomatic support system that allows researchers concerned to efficiently analyze the technical trends for the ever-growing industry and market. This paper introduces a couple of Korean sentence generation models that can automatically generate definitional statements as well as descriptions of technical terms and concepts. The proposed models are based on a deep learning model called LSTM (Long Sort-Term Memory) capable of effectively labeling textual sequences by taking into account the contextual relations of each item in the sequences. Our models take technical terms as inputs and can generate a broad range of heterogeneous textual descriptions that explain the concept of the terms. In the experiments using large-scale training collections, we confirmed that more accurate and reasonable sentences can be generated by CHAR-CNN-LSTM model that is a word-based LSTM exploiting character embeddings based on convolutional neural networks (CNN). The results of this study can be a force for developing an extension model that can generate a set of sentences covering the same subjects, and furthermore, we can implement an artificial intelligence model that automatically creates technical literature.

Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model (순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측)

  • Lee, In-Gyu;Song, Mi-Hwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.391-398
    • /
    • 2021
  • Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.

New Hybrid Approach of CNN and RNN based on Encoder and Decoder (인코더와 디코더에 기반한 합성곱 신경망과 순환 신경망의 새로운 하이브리드 접근법)

  • Jongwoo Woo;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.129-143
    • /
    • 2023
  • In the era of big data, the field of artificial intelligence is showing remarkable growth, and in particular, the image classification learning methods by deep learning are becoming an important area. Various studies have been actively conducted to further improve the performance of CNNs, which have been widely used in image classification, among which a representative method is the Convolutional Recurrent Neural Network (CRNN) algorithm. The CRNN algorithm consists of a combination of CNN for image classification and RNNs for recognizing time series elements. However, since the inputs used in the RNN area of CRNN are the flatten values extracted by applying the convolution and pooling technique to the image, pixel values in the same phase in the image appear in different order. And this makes it difficult to properly learn the sequence of arrangements in the image intended by the RNN. Therefore, this study aims to improve image classification performance by proposing a novel hybrid method of CNN and RNN applying the concepts of encoder and decoder. In this study, the effectiveness of the new hybrid method was verified through various experiments. This study has academic implications in that it broadens the applicability of encoder and decoder concepts, and the proposed method has advantages in terms of model learning time and infrastructure construction costs as it does not significantly increase complexity compared to conventional hybrid methods. In addition, this study has practical implications in that it presents the possibility of improving the quality of services provided in various fields that require accurate image classification.