• Title/Summary/Keyword: 순환수

Search Result 4,884, Processing Time 0.068 seconds

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

The Role of Tumor Necrosis Factor-$\alpha$ and Interleukin-$1{\beta}$ as Predictable Markers for Development of Adult Respiratory Distress Syndrome in Septic Syndrome (패혈증 증후군환자에서 성인성 호흡곤란 증후군 발생의 예측 지표서의 혈중 Tumor Necrosis Factor-$\alpha$와 Interleukin-$1{\beta}$에 관한 연구)

  • Koh, Youn-Suck;Jang, Yun-Hae;Kim, Woo-Sung;Lee, Jae-Dam;Oh, Soon-Hwan;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.452-461
    • /
    • 1994
  • Background: Tumor necrosis factor(TNF)-$\alpha$ and Interleukin(lL)-$1{\beta}$ are thought to play a major role in the pathogenesis of the septic syndrome, which is frequently associated with adult respiratory distress syndrome(ARDS). In spite of many reports for the role of TNF-$\alpha$ in the pathogenesis of ARDS, including human studies, it has been reported that TNF-$\alpha$ is not sensitive and specific marker for impending ARDS. But there is a possibility that the results were affected by the diversity of pathogenetic mechanisms leading to the ARDS because of various underlying disorders of the study group in the previous reports. The purpose of the present study was to evaluate the roles of TNF-$\alpha$ and IL-$1{\beta}$ as a predictable marker for development of ARDS in the patients with septic syndrome, in which the pathogenesis is believed to be mainly cytokine-mediated. Methods: Thirty-six patients of the septic syndrome hospitalized in the intensive care units of the Asan Medical Center were studied. Sixteens suffered from ARDS, whereas the remaining 20 were at the risk of developing ARDS(acute hypoxemic respiratory failure, AHRF). In all patients venous blood samples were collected in heparin-coated tubes at the time of enrollment, at 24 and 72 h thereafter. TNF-$\alpha$ and IL-$1{\beta}$ was measured by an enzyme-linked immunosorbent assay (ELISA). All data are expressed as median with interquartile range. Results: 1) Plama TNF-$\alpha$ levels: Plasma TNF-$\beta$ levels were less than 10pg/mL, which is lowest detection value of the kit used in this study within the range of the $mean{\pm}2SD$, in all of the normal controls, 8 of 16 subjects of ARDS and in 8 in 20 subjects of AHRF. Plasma TNF-$\alpha$ levels from patients with ARDS were 10.26pg/mL(median; <10-16.99pg/mL, interquartile range) and not different from those of patients at AHRF(10.82, <10-20.38pg/mL). There was also no significant difference between pre-ARDS(<10, <10-15.32pg/mL) and ARDS(<10, <10-10.22pg/mL). TNF-$\alpha$ levels were significantly greater in the patients with shock than the patients without shock(12.53pg/mL vs. <10pg/mL) (p<0.01). There was no statistical significance between survivors(<10, <10-12.92pg/mL) and nonsurvivors(11.80, <10-20.8pg/mL) (P=0.28) in the plasma TNF-$\alpha$ levels. 2) Plasma IL-$1{\beta}$ levels: Plasma IL-$1{\beta}$ levels were less than 0.3ng/mL, which is the lowest detection value of the kit used in this study, in one of each patients group. There was no significant difference in IL-$1{\beta}$ levels of the ARDS(2.22, 1.37-8.01ng/mL) and of the AHRF(2.13, 0.83-5.29ng/mL). There was also no significant difference between pre-ARDS(2.53, <0.3-8.34ngfmL) and ARDS(5.35, 0.66-11.51ng/mL), and between patients with septic shock and patients without shock (2.51, 1.28-8.34 vs 1.46, 0.15-2.13ng/mL). Plasma IL-$1{\beta}$ levels were significantly different between survivors(1.37, 0.4-2.36ng/mL) and nonsurvivors(2.84, 1.46-8.34ng/mL). Conclusion: Plasma TNF-$\alpha$ and IL-$1{\beta}$ level are not a predictable marker for development of ARDS. But TNF-$\alpha$ is a marker for shock in septic syndrome. These result could not exclude a possibility of pathophysiologic roles of TNF-$\alpha$ and IL-$1{\beta}$ in acute lung injury because these cytokine could be locally produced and exert its effects within the lungs.

  • PDF

The Analysis of Radiation Exposure of Hospital Radiation Workers (병원 방사선 작업 종사자의 방사선 피폭 분석 현황)

  • Jeong Tae Sik;Shin Byung Chul;Moon Chang Woo;Cho Yeong Duk;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2000
  • Purpose : This investigation was peformed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. Methods and Materials : The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyzed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. Results : The average of yearly radiation exposure of 347 persons was 1.52$\pm$1.35 mSv. Though it was less than 50mSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87$\pm$1.01 mSv/year, mean 1.22$\pm$0.69 mSv between 31 and 40 year old and mean 0.97$\pm$0.43 mSv/year over 41year old (p<0.001). Men received mean 1.67$\pm$1.54 mSv/year were higher than women who received mean 1.13$\pm$0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear modicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.59$\pm$1.81 msv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (p<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74$\pm$1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17$\pm$0.35 mSv/year and upper gastrointestinal room of mean 1.74$\pm$1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75$\pm$1.17 mSv/year and mean 1.50$\pm$1.39 mSv/year than other people who work in radiation area in hospital (p<0.05). Especially young doctors and technologists have the high opportunity to receive higher radiation exposure. Conclusions : The training and education of radiation workers for radiation exposure risks are important and it is necessary to rotate worker in short period in high risk area. The hospital management has to concern health of radiation workers more and to put an effort to reduce radiation exposure as low as possible in radiation areas in hospital.

  • PDF