• Title/Summary/Keyword: 순차 학습

Search Result 225, Processing Time 0.024 seconds

Evaluating the Impact of Training Conditions on the Performance of GPT-2-Small Based Korean-English Bilingual Models

  • Euhee Kim;Keonwoo Koo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.69-77
    • /
    • 2024
  • This study evaluates the performance of second language acquisition models learning Korean and English using the GPT-2-Small model, analyzing the impact of various training conditions on performance. Four training conditions were used: monolingual learning, sequential learning, sequential-interleaved learning, and sequential-EWC learning. The model was trained using datasets from the National Institute of Korean Language and English from BabyLM Challenge, with performance measured through PPL and BLiMP metrics. Results showed that monolingual learning had the best performance with a PPL of 16.2 and BLiMP accuracy of 73.7%. In contrast, sequential-EWC learning had the highest PPL of 41.9 and the lowest BLiMP accuracy of 66.3%(p < 0.05). Monolingual learning proved most effective for optimizing model performance. The EWC regularization in sequential-EWC learning degraded performance by limiting weight updates, hindering new language learning. This research improves understanding of language modeling and contributes to cognitive similarity in AI language learning.

The Relationship between Children's Information Processing and Basic Learning Abilities (유아의 정보처리능력과 기초학습능력 간 관계)

  • Kim, Nam Hee
    • Korean Journal of Childcare and Education
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2013
  • The purpose of this study was to examine the relationship between children's information processing ability and basic learning abilities. To collect the data, two tests were given to 99 children. The Korean K-ABC(Moon & Byun, 1997) and Pictorial Basic Learning Abilities for Children(Kim, 2011) were used to examine the relationship between children's information processing and basic learning abilities. The collected data were analyzed by correlation analysis and multiple regression analysis. According to the results of this study, there was a significant positive correlation between information processing(sequential processing, simultaneous processing) and basic learning abilities including reading, writing, and basic mathematics. And information processing significantly affected basic learning abilities. Namely, simultaneous processing explained 22% of basic learning abilities and by adding sequential processing, the explanation was increased to 25%. In conclusion, the results of this study suggest various implications about children's basic learning abilities. These implications will help teachers and parents to understand their children's learning.

Sequential Sentence Classification Model based on ELECTRA (ELECTRA 기반 순차적 문장 분류 모델)

  • Choi, Gi-Hyeon;Kim, Hark-Soo;Yang, Seong-Yeong;Jeong, Jae-Hong;Lim, Tae-Gu;Kim, Jong-Hoon;Park, Chan-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.327-330
    • /
    • 2020
  • 순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.

  • PDF

Sentence generation on sequential multi-modal data using random hypergraph model (랜덤 하이퍼그래프 모델을 이용한 순차적 멀티모달 데이터에서의 문장 생성)

  • Yoon, Woong-Chang;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.376-379
    • /
    • 2010
  • 인간의 학습과 기억현상에 있어서 멀티모달 데이터를 사용하는 것은 단순 모달리티 데이터를 사용하는 것에 비해서 향상된 효과를 보인다는 여러 연구 결과가 있어왔다. 이 논문에서는 인간의 순차적인 정보처리와 생성현상을 기계에서의 시뮬레이션을 통해서 기계학습에 있어서도 동일한 현상이 나타나는지에 대해서 알아보고자 하였다. 이를 위해서 가중치를 가진 랜덤 하이퍼그래프 모델을 통해서 순차적인 멀티모달 데이터의 상호작용을 하이퍼에지들의 조합으로 나타내는 것을 제안 하였다. 이러한 제안의 타당성을 알아보기 위해서 비디오 데이터를 이용한 문장생성을 시도하여 보았다. 이전 장면의 사진과 문장을 주고 다음 문장의 생성을 시도하였으며, 단순 암기학습이나 주어진 룰을 통하지 않고 의미 있는 실험 결과를 얻을 수 있었다. 단순 텍스트와 텍스트-이미지 쌍의 단서를 통한 실험을 통해서 멀티 모달리티가 단순 모달리티에 비해서 미치는 영향을 보였으며, 한 단계 이전의 멀티모달 단서와 두 단계 및 한 단계 이전의 멀티모달 단서를 통한 실험을 통해서 순차적 데이터의 단계별 단서의 차이에 따른 영향을 알아볼 수 있었다. 이를 통하여 멀티 모달리티가 시공간적으로 미치는 기계학습에 미치는 영향과 순차적 데이터의 시간적 누적에 따른 효과가 어떻게 나타날 수 있는지에 대한 실마리를 제공할 수 있었다고 생각된다.

  • PDF

A study on sequential iterative learning for overcoming catastrophic forgetting phenomenon of artificial neural network (인공 신경망의 Catastrophic forgetting 현상 극복을 위한 순차적 반복 학습에 대한 연구)

  • Choi, Dong-bin;Park, Young-beom
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.34-40
    • /
    • 2018
  • Currently, artificial neural networks perform well for a single task, but NN have the problem of forgetting previous learning by learning other kinds of tasks. This is called catastrophic forgetting. To use of artificial neural networks in general purpose this should be solved. There are many efforts to overcome catastrophic forgetting. However, even though there was a lot of effort, it did not completely overcome the catastrophic forgetting. In this paper, we propose sequential iterative learning using core concepts used in elastic weight consolidation (EWC). The experiment was performed to reproduce catastrophic forgetting phenomenon using EMNIST data set which extended MNIST, which is widely used for artificial neural network learning, and overcome it through sequential iterative learning.

Improvement of Sequential Prediction Algorithm for Player's Action Prediction (플레이어 행동예측을 위한 순차예측 알고리즘의 개선)

  • Shin, Yong-Woo;Chung, Tae-Choong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • It takes quite amount of time to study a game because there are many game characters and different stages are exist for games. This paper used reinforcement learning algorithm for characters to learn, and so they can move intelligently. On learning early, the learning speed becomes slow. Improved sequential prediction method was used to improve the speed of learning. To compare a normal learning to an improved one, a game was created. As a result, improved character‘s ability was improved 30% on learning speed.

Vector Quantization Using Cascaded Cauchy/Kohonen training (Cauchy/Kohonen 순차 결합 학습법을 사용한 벡터양자화)

  • Song, Geun-Bae;Han, Man-Geun;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.237-242
    • /
    • 2001
  • 고전적인 GLA 알고리즘과 마찬가지로 Kohonen 학습법은 경도 강하법으로 오차함수의 해에 접근해 나간다. 따라서 KLA의 이러한 문제를 극복하기 위해 모의 담금질법의 일종인 Cauchy 학습법을 응용을 제안한다. 그러나 이 방법은 학습시간이 느리다고 하는 단점이 있다. 본 논문 이 점을 개선시키기 위해 Cauchy 학습법과 Kohonen 학습법을 순차 결합시킨 또 다른 학습법을 제안한다. 그 결과 코시 학습법과 마찬가지로 국부최적 문제를 극복하면서도 삭습시간을 단축할 수 있었다.

  • PDF

Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving (안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링)

  • Yoon, Jae Ung;Lee, Ju Hong
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.9-20
    • /
    • 2022
  • Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

Instance-Based Learning for Intrusion Detection (네트워크 침입 탐지를 위한 사례 기반 학습 방법)

  • 박미영;이도헌;원용관
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.172-174
    • /
    • 2001
  • 침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.

  • PDF

Evolutionary Learning of Hypernetwork Classifiers Based on Sequential Bayesian Sampling for High-dimensional Data (고차 데이터 분류를 위한 순차적 베이지안 샘플링을 기반으로 한 하이퍼네트워크 모델의 진화적 학습 기법)

  • Ha, Jung-Woo;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.336-338
    • /
    • 2012
  • 본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.