• Title/Summary/Keyword: 순차패턴 마이닝

Search Result 90, Processing Time 0.021 seconds

Instance-Based Learning for Intrusion Detection (네트워크 침입 탐지를 위한 사례 기반 학습 방법)

  • 박미영;이도헌;원용관
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.172-174
    • /
    • 2001
  • 침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.

  • PDF

A Process Mining using Association Rule and Sequence Pattern (연관규칙과 순차패턴을 이용한 프로세스 마이닝)

  • Chung, So-Young;Kwon, Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

Study on the Usability Based on Web Mining in Army College Library Homepage (웹마이닝을 통한 도서관 홈페이지의 사용편의성에 관한 연구 - 육군대학 도서관 홈페이지를 중심으로 -)

  • 손용배;이응봉
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.213-218
    • /
    • 2001
  • 본 연구는 육군대학 도서관 홈페이지의 웹서버에 저장되어 있는 로그파일을 실험 데이터로 사용하여, 기존 데이터마이닝(data mining)의 기법들 중에서 연관규칙(association rules) 탐사 기법을 적용함으로써, 사용자들의 웹 항행에 대한 순차패턴을 추출하였다. 이를 분석하여 실제 사용자들이 효과적으로 사용할 수 있는 웹사이트 디자인을 제안하고 나아가 대상 웹사이트의 사용편의성을 평가하였다.

  • PDF

Classifying Patterns through Process Execution Traces on the Linux System (리눅스 상에서 프로세스 실행 기록을 통한 패턴 분류)

  • 김균섭;김금실;한명묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.231-234
    • /
    • 2004
  • 본 논문에서 리눅스 프로세스들의 패턴들(정상행위 와 비정상행위)을 학습하고 그 밖에 예비 시험들의 확장을 제시하는데 의가 있다고 할 수 있다. 패턴들은 리눅스 시스템들 안에 오용과 침입들을 확인 할 수 있도록 사용하였다. 리눅스 sendmail 프로세스의 처리의 정상행위 그리고 비정상 행위들을 위해 운영체제 호출 순차들에서 기계 학습 작업을 고안하였다. 이 방법은 테스트 기록 데이터의 정상행위로부터 sendmail의 비정상행위의 실행을 모두 정확하게 구별할 수 있는 것을 보여준다. 예비 시험들은 기계학습이 침입탐지 서비스를 제공하기 위하여 저장 된 순차 정보를 추출화 함으로써 중요한 역할을 다 할 수 있다는 것으로 나타냈다.

  • PDF

A product recommendation system based on sequence pattern mining for smartphone customers (스마트폰 고객들을 위한 데이터 마이닝 기반의 제품 추천 시스템)

  • Jin, Se-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.204-206
    • /
    • 2012
  • 스마트폰 시장의 확대로 인한 스마트폰 고객의 증가와 스마트폰을 이용한 제품 구매 활동이 급격하게 증가하고 있다. 이러한 추세에 따라 스마트폰 고객 추천 시스템에 관한 연구가 활발히 진행되고 있다. 하지만 기존의 스마트폰 고객 추천 시스템의 경우 고객들의 고차원 데이터를 효율적으로 처리하는데 어려움이 있다. 따라서 이 논문에서는 스마트폰 고객들의 고차원 데이터를 효율적으로 처리할 수 있는 부분 공간 군집화 기법과 순차 패턴 알고리즘을 이용한 제품 추천 시스템을 제안한다. 이 시스템은 스마트폰 고객들의 고차원 데이터를 기반으로 세분화된 고객들의 부분 군집화를 한다. 이들 군집화를 기반으로 순차적 패턴 알고리즘을 이용한 고객들의 제품 구매 패턴을 추출한다. 이 연구를 통해 스마트폰 고객들의 다양한 고차원 데이터를 이용한 제품 추천 시스템은 기업의 제품 판매 및 고객 마케팅에 긍정적인 도움을 줄 수 있을 것으로 기대된다.

Web document prediction using forward reference path traversal patterns (전 방향 참조 경로 탐사 패턴을 이용한 웹 문서 예측)

  • 김양규;손기락
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.112-114
    • /
    • 2004
  • 오늘날 웹을 이용하는 사용자들의 웹 검색 형태를 저장한 웹 로그 데이터들은 데이터 마이닝을 위한 중요한 자료가 되고 있다. 이들 웹 로그들로부터 사용자의 현재 행동을 기반으로 사용자가 다음에 요청할 요구를 예측할 수 있는 예측 모델을 만들 수 있다. 하지만 이들 웹 로그들은 크기가 매우 크고 분석하기가 어렵다. 이런 문제를 해결하기 위해 이미 않은 방법이 제안되었다. 그 중에서 효과적으로 예측할 수 있도록 제안된 순차적 분류 기반에 연관법칙을 적용한 예측 기법이 있다. 본 논문에서는 전방향 참조 경로 탐사 패턴 알고리즘을 적용하여 연관규칙에 기반 한 웹 문서 예측 기법을 향상시키는 모델을 제안한다.

  • PDF

An Adaptive Web Caching Server Based On User Access Patt (사용자 액세스 패턴을 이용한 웹 캐슁 서버)

  • 안수연;김명순;박병준;차호정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문은 웹을 이용하는 사용자들이 웹 문서 액세스 패턴을 파악하여 캐슁을 할 대상을 결정하고 관리하는 적응력이 있는 웹 캐슁 서버를 제안하고 구현한다. 빈번히 나타나는 순서열을 찾는 데이터 마이닝 기법을 캐슁 서버의 로그에 적용하여 순차적으로 액세스되는 웹 객체들을 찾아낸 다음, 필요한 경우 이들을 캐쉬 내에 선반입함으로써 히트율을 높이고, 따라서 캐쉬의 효율을 증가시킬 수 있는 캐슁 서버의 모델을 제시한다. 그리고 초기실험을 통하여, 제안된 캐슁 서버의 효율이 기존 캐슁서버에 비해 실제 상당히 증가함을 보였다.

Development of GIS-based Advertizing Postal System Using Temporal and Spatial Mining Techniques (시간 및 공간마이닝 기술을 이용한 GIS기반의 홍보우편 시스템 개발)

  • Lee, Heon-Gyu;Na, Dong-Gil;Choi, Yong-Hoon;Jung, Hoon;Park, Jong-Heung
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • Advertizing postal system combined with GIS and temporal/spatial mining techniques has been developed to activate advertizing service and conduct marketing campaign efficiently. In order to select customers accurately, this system provide purchase propensity information using sequential, cyclicpatterns and lifesytle information through RFM analysis and clustering technique. It is possible for corporate mailer to do customer oriented marketing campaign with the advertizing postal system as well as 'one-stop' service including target customer selection, mail production, and delivery request.

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.