Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.172-174
/
2001
침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.
Journal of Korean Society of Industrial and Systems Engineering
/
v.31
no.2
/
pp.104-111
/
2008
A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.
Proceedings of the Korean Society for Information Management Conference
/
2001.08a
/
pp.213-218
/
2001
본 연구는 육군대학 도서관 홈페이지의 웹서버에 저장되어 있는 로그파일을 실험 데이터로 사용하여, 기존 데이터마이닝(data mining)의 기법들 중에서 연관규칙(association rules) 탐사 기법을 적용함으로써, 사용자들의 웹 항행에 대한 순차패턴을 추출하였다. 이를 분석하여 실제 사용자들이 효과적으로 사용할 수 있는 웹사이트 디자인을 제안하고 나아가 대상 웹사이트의 사용편의성을 평가하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.231-234
/
2004
본 논문에서 리눅스 프로세스들의 패턴들(정상행위 와 비정상행위)을 학습하고 그 밖에 예비 시험들의 확장을 제시하는데 의가 있다고 할 수 있다. 패턴들은 리눅스 시스템들 안에 오용과 침입들을 확인 할 수 있도록 사용하였다. 리눅스 sendmail 프로세스의 처리의 정상행위 그리고 비정상 행위들을 위해 운영체제 호출 순차들에서 기계 학습 작업을 고안하였다. 이 방법은 테스트 기록 데이터의 정상행위로부터 sendmail의 비정상행위의 실행을 모두 정확하게 구별할 수 있는 것을 보여준다. 예비 시험들은 기계학습이 침입탐지 서비스를 제공하기 위하여 저장 된 순차 정보를 추출화 함으로써 중요한 역할을 다 할 수 있다는 것으로 나타냈다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.204-206
/
2012
스마트폰 시장의 확대로 인한 스마트폰 고객의 증가와 스마트폰을 이용한 제품 구매 활동이 급격하게 증가하고 있다. 이러한 추세에 따라 스마트폰 고객 추천 시스템에 관한 연구가 활발히 진행되고 있다. 하지만 기존의 스마트폰 고객 추천 시스템의 경우 고객들의 고차원 데이터를 효율적으로 처리하는데 어려움이 있다. 따라서 이 논문에서는 스마트폰 고객들의 고차원 데이터를 효율적으로 처리할 수 있는 부분 공간 군집화 기법과 순차 패턴 알고리즘을 이용한 제품 추천 시스템을 제안한다. 이 시스템은 스마트폰 고객들의 고차원 데이터를 기반으로 세분화된 고객들의 부분 군집화를 한다. 이들 군집화를 기반으로 순차적 패턴 알고리즘을 이용한 고객들의 제품 구매 패턴을 추출한다. 이 연구를 통해 스마트폰 고객들의 다양한 고차원 데이터를 이용한 제품 추천 시스템은 기업의 제품 판매 및 고객 마케팅에 긍정적인 도움을 줄 수 있을 것으로 기대된다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.112-114
/
2004
오늘날 웹을 이용하는 사용자들의 웹 검색 형태를 저장한 웹 로그 데이터들은 데이터 마이닝을 위한 중요한 자료가 되고 있다. 이들 웹 로그들로부터 사용자의 현재 행동을 기반으로 사용자가 다음에 요청할 요구를 예측할 수 있는 예측 모델을 만들 수 있다. 하지만 이들 웹 로그들은 크기가 매우 크고 분석하기가 어렵다. 이런 문제를 해결하기 위해 이미 않은 방법이 제안되었다. 그 중에서 효과적으로 예측할 수 있도록 제안된 순차적 분류 기반에 연관법칙을 적용한 예측 기법이 있다. 본 논문에서는 전방향 참조 경로 탐사 패턴 알고리즘을 적용하여 연관규칙에 기반 한 웹 문서 예측 기법을 향상시키는 모델을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.358-360
/
2001
본 논문은 웹을 이용하는 사용자들이 웹 문서 액세스 패턴을 파악하여 캐슁을 할 대상을 결정하고 관리하는 적응력이 있는 웹 캐슁 서버를 제안하고 구현한다. 빈번히 나타나는 순서열을 찾는 데이터 마이닝 기법을 캐슁 서버의 로그에 적용하여 순차적으로 액세스되는 웹 객체들을 찾아낸 다음, 필요한 경우 이들을 캐쉬 내에 선반입함으로써 히트율을 높이고, 따라서 캐쉬의 효율을 증가시킬 수 있는 캐슁 서버의 모델을 제시한다. 그리고 초기실험을 통하여, 제안된 캐슁 서버의 효율이 기존 캐슁서버에 비해 실제 상당히 증가함을 보였다.
Advertizing postal system combined with GIS and temporal/spatial mining techniques has been developed to activate advertizing service and conduct marketing campaign efficiently. In order to select customers accurately, this system provide purchase propensity information using sequential, cyclicpatterns and lifesytle information through RFM analysis and clustering technique. It is possible for corporate mailer to do customer oriented marketing campaign with the advertizing postal system as well as 'one-stop' service including target customer selection, mail production, and delivery request.
Journal of the Korean Society for information Management
/
v.24
no.2
/
pp.89-104
/
2007
This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.
Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.