본 논문에서는 데이터베이스에 새로운 트랜잭션이 추가되었을 때 순차 패턴을 갱신하는 문제를 연구하였다. 트랜잭션이 순차적으로 증가되는 환경에서 기존에 발견된 빈발 시퀸스를 재사용하여 순차패턴을 갱신하는 효율적인 알고리즘을 제안한다. 본 논문에서 제안한 방법은 후보 집합의 개수를 효율적으로 줄임으로써 AprioriAll이나 PrefixSpan 알고리즘보다 좋은 성능을 보임을 실험으로 확인하였다.
높은 유틸리티 순차 패턴 탐사는 데이터 마이닝에서 중요한 연구 주제로 간주되고 있다. 이 주제에 대해 몇 개의 알고리즘들이 제안되었지만, 그것들은 높은 유틸리티 순차 패턴 탐사의 탐색 공간이 커지는 문제에 부딪히게 된다. 한 시퀀스의 더 엄격한 유틸리티 상한 값은 탐색 공간에서 초기에 유망하지 않은 패턴들을 더 가지치기할 수 있다. 본 논문에서 새로운 유틸리티 상한 값을 제안하는데, 그것은 한 시퀀스와 그 자손 시퀀스들의 최대 예상 유틸리티인 sequence expected utility (SEU)이다. 높은 유틸리티 순차 패턴들을 탐사하는데 필수적인 정보를 유지하기 위해 각 패턴에 대한 시퀀스 유틸리티 리스트를 새로운 자료구조로 사용한다. SEU를 활용하여 높은 유틸리티 순차 패턴들을 찾아내는 알고리즘인 High Sequence Utility List-Span (HSUL-Span)을 제안한다. 서로 다른 영역의 합성 데이터세트와 실제 데이터세트에 대한 실험 결과는 HSUL-Span이 상당히 적은 수의 후보 패턴들을 생성하고 실행 시간 면에서 다른 알고리즘들보다 우수한 것을 보여준다.
본 논문은 플래시 메모리와 하드디스크로 구성되는 하이브리드 저장장치의 성능을 높이기 위한 프리패칭 기법을 제안한다. 하이브리드 저장장치에 포함된 플래시 메모리는 하드디스크에 비해 쓰기/읽기 연산 속도가 상대적으로 빠르기 때문에 이를 캐시 공간처럼 활용하여 성능을 높일 수 있다. 프리패칭을 위한 기본 전략은 순차패턴 마이닝을 이용하는 것이며, 이를 이용하면 시간적 흐름을 가지는 과거 객체 참조열로부터 반복되는 객체 접근 패턴을 추출할 수 있다. 프리패칭 기법을 사용하여 하이브리드 저장장치의 성능을 최대화하기 위하여 본 논문은 두 가지 방법을 사용하였다. 첫 번째는 플래시 메모리 매핑을 위하여 기존의 FAST 알고리즘을 개선하였고, 두 번째는 제한된 플래시 메모리의 공간을 효율적으로 사용하기 위하여 프리패칭 단위로 파일 수준과 블록 수준을 동시에 고려하였다. 제안 기법의 효용성을 평가하기 위해 참조 지역성을 가지는 합성 데이터와 UCC 데이터를 활용하여 실험을 실시하여 제안된 방법의 우수성을 증명하였다.
마이닝 시스템은 그 특성에 따라 매우 다른 형태의 구현 방법이 존재한다. 그러므로 마이닝 시스템간 호환성이나 재사용성은 매우 낮다. 본 노문에서는 이 문제를 시계열 데이터베이스를 통한 RDB와 강 결합함으로써 표준화에 대한 문제를 해겨라고자 시도하였다. RDB와의 강 결합은 표준화 문제를 해결함과 더불어 마이닝 시스템에 DBMS의 관련 기술을 이용함으로써 성능을 극대화시킨다. 특히 DBMS의 인텍스 기능을 이용함으로써 마이닝 시스템의 성능 향상을 시도하였다. 본 논문에서는 기존의 순차패턴 탐사의 시간개념 부재, 트랜잭션 데이터베이스 기반구조, 그리고 알고리즘 수행에 있어서 메모리 한계에 따른 문제등의 단점을 지적하고, 이를 수정하고 보완하기 위해서 시간 거리와 패턴 길이의 개념을 확장하였으며 그에 따른 연관규칙의 관련 공식을 수정 보완하여 제안한다. 또한 RDB와의 강 결합되어 기존의 트랜잭션 데이터베이스 구조를 벗어나 시계열 데이터에 보다 쉽게 적용할 수 있는 절차와 알고리즘을 제안한다.
정보통신기술의 발달로 전자금융서비스가 활성화됨에 따라 선불전자지급수단을 이용한 전자금융거래도 증가하고 있다. 선불전자지급수단의 다양한 순기능에도 불구하고, 현금화가 용이하다는 점 때문에 전자금융사기에 악용되는 사례가 증가하고 있다. 본 논문에서는 선불전자 지급수단의 금융거래내역에 순차패턴 마이닝 기법을 적용하여 이상금융거래를 탐지하는 방안을 제시하였다. 선불전자지급수단의 금융거래내역을 서비스이용 순서로 나열한 다음 순차패턴 마이닝을 통해 이상금융거래 탐지패턴을 추출하였다. 도출된 패턴을 실제 금융거래 데이터에 적용하는 실험을 통해 방법론의 효과성을 검증하였다. 실험결과 테스트 데이터의 탐지성능 정확도가 95.6퍼센트로 나타나 제시된 방법론이 이상금융거래를 효과적으로 탐지할 수 있음을 확인하였다. 본 논문에서 제시한 방법론은 향후 이상금융거래탐지시스템 분석모델에 적용함으로써 전자금융사고 피해를 줄이는데 활용될 수 있을 것으로 기대된다.
순차 패턴 탐사에 대한 연구는 대용량의 데이터베이스에서 사용자에 의해 주어지는 최소 지지도를 만족하는 빈발 시퀀스를 찾는 문제를 다룬다. 하지만 현재까지 이루어진 순차 패턴 탐사 방법은 빈발 시퀀스들의 길이가 길어지거나 최소 지지도가 상대적으로 낮게 주어진 상황에서는 생성되는 시퀀스가 기하급수적으로 많아져서 성능이 급격히 저하되는 문제점을 가지고 있다. 본 논문에서는 이 문제를 해결하기 위해서 모든 빈발 시퀀스의 정보를 포함하며 그 수가 현저히 적은 닫힌 빈발 시퀀스를 찾는 방법을 제안한다. 제안하는 알고리즘은 효율적으로 가지치기를 수행하기 위해서 깊이우선 탐색 방법으로 후보 시퀀스를 생성하고 데이터베이스를 비트맵으로 표현하여 비트 연산으로 지지도를 효율적으로 계산한다. 또한, 비트맵으로 표현된 시퀀스 특성을 이용하여 가지치기할 시퀀스를 적은 연산 비용으로 찾을 수 있다. 이런 장점을 통하여 제안한 방법이 지금까지 제안된 알고리즘보다 훨씬 빨리 닫힌 빈발 시퀀스를 찾는 것을 성능 실험을 통하여 확인하였다.
연관규칙 마이닝 기법 중에 하나인 FP-트리 알고리즘을 이용하는 추천시스템이 시도되고 있다. 본 논문에서는 트랜�Ъ� 데이터베이스로부터 빈발 2-항목집합만을 추출하여 연관규칙을 생성하는 변형된 FP-알고리즘을 사용하는 추천시스템을 제안하였다. 제안된 추천시스템은 전처리 모듈, 학습 모듈, 추천 모듈 및 평가 모듈로 구성되었다. 제안된 추천시스템의 실험을 통하여 상품 추천의정확률과 재현율과 F-Measure와 성공률과 추천실행시간을 수행하였으며, 순차패턴 마이닝 기법을 사용하는 추천시스템과의 성능을 비교분석 하였다. 순차패턴 마이닝기법을 사용하는 추천시스템과 학습 성능, 추천 성능을 비교한 결과 학습 성능은 5배 이상 향상되었으며, 추천 성능은 20%이상 향상 되었다. 결론적으로, 순차패턴 추천시스템과 같은 데이터를 가지고 실험하여 추천시스템 성능의 타당성에는 보다 나은 시스템임을 입증 하였다.
순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. USN 환경에서 발생하는 스트림 데이터는 시간 속성을 갖는 이벤트들의 집합으로 표현할 수 있으며 순차 패턴 탐사 기법을 이용하여 유용한 정보를 탐사할 수 있다. 그러나 스트림 데이터 환경에서는 데이터가 무한하고 연속적으로 발생하기 때문에 모든 데이터를 저장하여 패턴을 탐사하는 기법을 적용하는 데는 문제가 있다. 이 논문에서는 향상된 데이터 처리방식을 사용하여 순차패턴을 탐사하는 스트림 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 의미 단위의 가변적 윈도우를 사용하여 스트림 데이터로부터 트랜잭션을 생성하고 이 트랜잭션들의 집합을 해시와 슬라이딩 윈도우를 사용하여 스트림 데이터의 순차 패턴을 탐사한다. 이를 이용한 제안 기법은 실시간 시스템에 적합하게 데이터 저장 공간 사용의 효율성을 높이고 신속하게 유용한 패턴을 탐사할 수 있다.
대용량의 데이터들로부터 사용자가 원하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝의 기술 중 연관규칙은 항목들의 집합으로 표현되는 트랜잭션에서 각 항목간의 연관성을 찾는데 사용된다. 그러나 실세계에는 트랜잭션이 없이 일련의 이벤트만 시간에 따라서 발생하는 데이터들이 많이 존재한다. 이러한 시계열 이벤트 데이터들로부터 다양한 가상 트랜잭션을 생성하는 기법들을 제시한다. 이러한 가상 트랜잭션 데이터로 변환된 시계열 데이터에 연관규칙, 순차패턴, 주기패턴과 관련된 여러 가지 알고리즘을 바로 적용 함으로서 유용한 규칙들을 발견해 낼 수 있다.
DNA 염기 서열이나 단백질 아미노산 서열과 같은 생물학적 서열 데이터들은 일반적으로 많은 수의 항목들을 가지고 있다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 수 백개의 항목으로 이루어진 연속된 서열들이 존재한다. 이들 서열들에서 빈번하게 발생하는 연속 서열을 검색하는 것은 생물학적 서열 분석에서 중요한 부분을 차지하고 있다. 이전에는 순차 패턴을 효과적으로 발견하고자 하는 많은 연구들이 수행되었으며 대부분의 기존 순차패턴 마이닝 기법들은 Apriori 알고리즘을 기반으로 한다. PrefixSpan 알고리즘은 Apriori 기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로 부터 서열 패턴을 확장해나가는 방식이다. 따라서 길이가 긴 연속 서열을 포함하는 생물학적 데이터서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 길이가 긴 생물학적 데이터 서열들로부터 빈번하게 발생하는 연속 서열들을 검색하기에는 효율적이지 않다. 본 논문에서는 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색성능이 보다 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.