네트워크가 급속도로 발달함에 따라, 네트워크 상에서 발생되는 트래픽 데이타를 대상으로 마이닝 기법을 적용하려는 연구가 활발히 진행되고 있다. 그러나 네트워크 트래픽 데이타를 대상으로 수행되는 마이닝 작업은 네트워크 사용자의 프라이버시를 침해할 여지가 있다는 문제점이 있다. 본 논문에서는 대용량 네트워크 트래픽 데이타를 대상으로 사이트의 프라이버시를 보호하면서 마이닝 결과의 정확성과 실용성을 보장할 수 있는 효율적인 순차 패턴 마이닝 기법을 제안한다. 제안된 기법은, N-저장소 서버 모델과 정보 유지 대체 기법을 사용함으로써, 각 사이트에 저장되어 있는 네트워크 데이타를 공개하지 않은 상태에서 순차 패턴 마이닝을 수행한다. 또한 후보 패턴의 발생 여부를 신속히 결정할 수 있는 메타 테이블을 유지하여 전체 마이닝 과정이 효율적으로 진행되도록 한다. 네트워크 상에서 발생한 실제 트래픽 데이타를 대상으로 다양한 실험을 수행한 결과 제안된 기법의 효율성과 정확성을 확인할 수 있었다.
유비쿼터스 컴퓨팅의 발전에 따라 일대일 개인화 서비스를 위한 인프라스트럭처가 구축되면서, 사용자의 상황과 환경, 즉 상황인식 기반 서비스의 중요성이 부각되고 있다. 스마트 홈은 현실공간과 가상공간을 연결하여 가상공간에서 현실의 상황을 정보화하고 이를 활용하여 사용자 중심의 지능화된 서비스를 제공하는 기술이다. 본 논문에서는 스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견을 제안하였다. 마이닝을 이용하여 위치 트랜잭션에서 발생하는 위치간의 연관 규칙에 시간의 변이를 추가하여 행동 순차 패턴을 발견하였다. 인식된 시간 순서에 따라 사용자가 이동한 경로의 파악 및 행동 방향을 예측하고 그에 따른 서비스가 가능하다. 마이닝을 이용한 행동 순차 패턴의 성능 평가를 하기 위해 대응표본 t검정을 실시하여 유용성을 검증하였다. 평가 결과, 서비스에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였고 높은 만족도를 보임을 확인하였다. 따라서 본 연구 결과를 활용하면 시장성 증대와 고부가 가치를 창출할 수 있을 것으로 기대하며 다양한 응용 분야에 활용이 가능하다.
침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 최근 인터넷의 급속한 발달과 함께 침입의 유형들이 복잡해지고 새로운 침입유형의 발생빈도가 높아져 이에 대한 빠르고 정확한 대응이 필요하다. 따라서 이 논문에서는 침입탐지 시스템의 이러한 문제점을 해결하기 위한 한 방안으로 지능적이고 자동화된 탐지를 지원하기 위한 경보데이터 순차 패턴 마이닝 기법을 제안한다. 제안된 순차 패턴 마이닝 기법은 기존의 마이닝 기법 중 prefixSpan 알고리즘을 경보데이터의 특성에 맞게 확장 설계하였다. 이 확장 설계된 순차패턴 마이너는 보안정책 실행시스템의 경보데이터 분석기의 일부분으로 구성된다. 구현된 순차패턴 마이너는 탐사된 패턴 내에서 적용 가능한 침입패턴들을 찾아내어 효율적으로 침입을 탐지하여 보안정책 실행 시스템에서 이를 기반으로 새로운 보안규칙을 생성하고 침입에 대응할 수 있다. 제안된 경보데이터 순차 패턴 마이너를 이용하여 침입의 시퀀스의 행동을 예측하거나 기술하는 규칙들을 생성하므로 침입을 효율적으로 예측하고 대응할 수 있다.
생물학적 서열 데이터는 크게 DNA 염기 서열과 단백질 아미노산 서열이 있다. 이들 서열은 일반적으로 많은 수의 항목들을 가지고 있어 그 길이가 매우 길다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 부분 연속 서열들이 존재하는데 이들 서열들을 찾아내는 것은 다양한 서열 분석에서 유용하게 사용될 수 있다. 이를 위해 초기에는 Apriori 알고리즘을 기반으로 하는 순차패턴 마이닝 알고리즘들을 활용하는 방법들이 많이 제시되었다. 그중 PrefixSpan 알고리즘은 Apriori기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로부터 서열 패턴을 확장해나가는 방식으로 길이가 긴 연속 서열을 포함하는 생물학적 데이터 서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 원본 데이터베이스보다 크기가 큰 별도의 프로젝션 데이터베이스를 사용함으로서 많은 비용부담이 발생하고 특히 길이가 긴 서열에 대해서는 더욱 효율적이지 못하다. 이에 본 논문에서 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색 성능이 우수함을 증명한다.
순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 탐사하는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용 가능한 탐사 기법으로 동적인 가중치 변화를 탐색 과정에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터가 들어오는 스트림 환경에서 동적 가중치를 적용하여 빈발한 이벤트들을 탐사하는 새로운 순차 패턴 탐사 기법을 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여주고 해시 구조를 통한 데이터 입출력으로 빈발한 순차 패턴을 빠르게 탐사할 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다. 제안하는 기법은 다른 가중치 순차 패턴 탐사 기법과의 비교를 통해 동적 가중치 탐사 기법의 중요성을 보인다.
웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.
최근 XML 저장 기법, 질의 최적화, 인덱싱 등의 XML 관련 기술이 활발히 연구되고 있다. 이와 관련하여 하나의 DTD나 XML Schema로 정의된 고정 구조를 공유하는 문서 집합이 아니라 다양한 구조를 가진 문서 집합인 경우 다중 문서간의 구조적 유사성이나 차이점 등을 파악할 필요가 있다. 예를 들어 서로 다른 사이트나 문서 관리 시스템에서 도출된 문서들을 합병하거나 분류할 필요가 있을 때, 문서를 처리하기 위해 공유 구조를 발견하는 일은 매우 중요하다. 본 연구에서는 다양한 문서들의 구조를 구성하는 경로들간의 유사성을 파악하기 위해 기존의 순차패턴 마이닝 알고리즘(1)을 변형하여 두 XML 문서간 최대 유사 경로를 추출한다. 몇 가지 실험을 통해 본 논문에서 제안한 변형된 순차패턴 마이닝 알고리즘이 두 문서간의 최대 유사 경로를 찾아내고 또한 두 문서간의 정확한 공유 경로 및 최대 유사 경로를 정확히 찾을 수 있음을 보인다. 또한 실험 결과 분석을 위해 최대 유사 경로를 기반으로 정의된 유사성 척도가 XML 문서를 정확하게 분류할 있음을 보인다.
효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성 비용을 줄이고 동시에 생성된 후보패턴에 대한 탐색공간을 줄여야 한다. 그러나 이전에 개발된 알고리즘들은 이러한 문제들을 효율적으로 해결하지 못하고 있다. 특히 Apriori-like 방법들은 알고리즘은 단순하지만 많은 크기의 후보패턴 집합생성, 대용량 데이터 베이스의 반복적인 탐사 등의 문제점이 있고, PrefixSpan[2]은 단계별로 분할된 프레픽스 프로젝티드(prefix projected) 데이터 베이스들을 구성 하여 후보패턴의 지지도 계산을 위한 탐색 공간을 줄이지만 프로젝티드 데이타베이스들의 구성비용이 크다는 문제점이 있다. 이러한 문제점들의 개선을 위해 본 논문에서는 새로운 순차패턴 마이닝 방법인 Suffixspan(Suffix Checked Sequential Pattern mining)을 제 안한다. Suffixspan은 순차패턴 집합의 단계별 분할특성과 서픽스(suffix) 특성을 이용하여 적은 비용으로 작은 크기의 후보패턴 집합을 생성하고, 1-프레픽스 프로젝티드 데이타베이스를 구성하여 후보패턴 검사를 위한 탐색공간을 줄인다.
방대한 양의 데이터들 속에 존재하는 일관된 흐름이나 경향을 파악해 내는 데이터 마이닝에 대한 관심이 확산되고 있다. 특히 항목들 상호간의 연관성을 나타내는 연관 규칙과 시간 개념이 포함되어 항목들 사이의 순서를 찾아내는 순차 패턴의 탐사는 데이터 마이닝에서 중요한 역할을 하고 있다. 본 논문에서는 트랜잭션 데이터베이스에서 연관 규칙과 순차 패턴을 탐사하는 시스템의 설계 및 구현에 관하여 기술한다. 연관 규칙을 위해 Aproiri, DHP를, 순차패턴을 위해 AprioriAll등 기존에 연구된 대표적인 알고리즘들을 사용하였고, Windows NT상에서 Visual C++과 JAVA언어로 구현하였다. 편리한 사용자 환경 구축을 위해, 데이터의 입력 형식으로 텍스트 타입과 MDB(Microsoft Access)형태를 모두 처리할 수 있게 하였고, 출력형식은 스프레드시트이다. 입력 데이터로 실험 데이터와 통계청의 DB 이용 로그 데이터에 대하여 본 시스템 을 수행하였다.
고병원성 조류 인플루엔자는 빠른 확산과 높은 치사율로 인하여 발병 초기에 질병의 확산경로 및 확산범위를 예측한다는 것은 매우 어려운 문제이면서 동시에 반듯이 해결해야만 하는 중요한 과제이다. 본 연구에서는 공개된 법정 고병원성 조류인플루엔자의 발병데이터를 기반으로 순차패턴 마이닝을 적용하여 질병의 순차적인 확산경로 규칙을 도출한 후, 그 결과를 바탕으로 지역개념계층(location concept hierarchy)에 따른 추상화 레벨의 점진적인 조절을 통하여 지역 원도우의 확대와 축소를 적용함으로써 도시(city)레벨부터 리(street)레벨까지의 질병확산경로 그래프와 GIS기반의 질병확산경로에 대한 분석을 시도하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.