• Title/Summary/Keyword: 순차파괴

Search Result 32, Processing Time 0.022 seconds

Development of High Efficiency Dehumidifiers in low temperature (저온에서 고효율 제습기 개발)

  • Kim, Jong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.206-211
    • /
    • 2016
  • Various applications require dry air at low temperature, such automation equipment, semiconductor manufacturing, chemical production lines, and coating processes for the shipbuilding industry. Four evaporators for low temperature (below $0^{\circ}C$) were installed for a dehumidification system. Moist air is cooled sequentially over three evaporators. The first evaporator has an evaporation temperature of $13^{\circ}C$, that of the second evaporator is $5^{\circ}C$, and that of the third evaporator is maintained at $-1.3^{\circ}C$. In the fourth evaporator implantation thereby the moisture contained in the moisture air. A pressure regulator (CPCE 12) is used at this point and is defrosted when the vapor pressure is below a set value. The non-implantation moisture of the air is a heating system that uses the waste heat of a condenser with high temperature. It develops the cooling type's dehumidifier, which is important equipment that prevents the destruction of protein and measures the temperature and humidity at each interval by changing the front air velocity from 1.0 m/s to 4.0 m/s. The cooling capacity was also calculated. The greatest cooling capacity was 1.77 kcal/h for a front air velocity of 2.0 m/s

Physicochemical Variation by Weathering Degree of Granite from the Mireuksaji Temple Stone Pagoda, Iksan, Korea (익산 미륵사지석탑 화강암의 풍화에 의한 물리화학적 특성변화)

  • Yang, Hee-Jae;Han, Min-Su;Kim, Sa-Dug;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.11-24
    • /
    • 2008
  • A physical characteristics and chemical compositions change by weathering on the granite were examined for the conservation treatment of the Mireuksaji temple stone pagoda. The natural weathered granite was collected from the Mt. Mireuk, and divided into the classification standards based on weathering degrees and strength measured by rock-test hammer. The results from comparison of the strength measured by undestructive rock-test hammer and the strength values converted from ultrasonic velocity showed that each strength measurement value was proportionate. The water absorption of the sample was 1.68 to 0.20%. The F-type of fresh rock was not naturally saturated and the WW-type was naturally saturated but took quite a long time. The water absorption was increased gradually in order of SW-type, the MW-type and the HW-type according to weathering condition. The CW-type samples showed the highest water absorption among the weathered classification samples. Through dyeing test, it was found out that only the feldspar was dyed out of the F-type and the WW-type. The SW-type and the MW-type were distinguished by the fact that plagioclase being dyed. And dyed area was expanded to quartz crack in HW-type and CW-type. Physical change by weathering of the rock-forming minerals could be classified with 3 grades. Through the XRD analysis, albite among the rock-forming mineral showed remarkable decrease. SEM-EDX analysis of the component change in the rock-forming minerals such as biotite, plagioclase, and orthoclase, showed that in case of highly-weathered grade samples compared with fresh samples, contents of the $Al_2O_3$, $K_2O$, $Na_2O$ increase and CaO, MgO decrease in the biotite, the CaO, $K_2O$ increase and $Na_2O$ decrease in the plagioclase, the $Al_2O_3$ a little increase and $K_2O$, $Na_2O$ decrease in the orthoclase. The results of extracted cation analysis using the powder samples of each weathering grade, the CaO, $Na_2O$, $K_2O$ and MgO are highly chemical variations in rock forming minerals and positive variation show high in the weathering grade of the WW-type and CW-type. This research will be used as an importance data to establish a plan for conservation treatment of composed stone in the Mireuksaji temple stone pagoda.

  • PDF