• Title/Summary/Keyword: 순시전압강하

Search Result 52, Processing Time 0.016 seconds

Calculation of the Harmonic Emission Limit for low-Voltage Electrical Equipment (국내 저압 전기기기의 고조파 유출 제한값 산정)

  • Kang, Moon-Ho;Song, Yang-Hoi;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.56-61
    • /
    • 2008
  • Because the harmonic disturbance characteristic which makes voltage drop and the deterioration of instantaneous power quality in electrical power system overheats the NGR and the customer capacitor and malfunctions the OCGR and AMR, it is necessary for electric power company to take active measures to reduce this disturbance. International Electrotechnical Commission(IEC) 61000-3-2 specifies limits for harmonic current emissions generated by low voltage(LV) electrical equipment whose input current $\leq$ 16(A) per phase. Analysis shows that limits for Class A equipment in IEC are calculated using the reference impedance of LV system and maximum permissible voltage and limits for other Classes are also calculated based on limits for Class A. Therefore we have calculated four(4) internal limits for LV electrical equipment using the korea reference impedance and maximum permissible voltage in this paper.

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.