• Title/Summary/Keyword: 순수비틀림

Search Result 37, Processing Time 0.023 seconds

Prediction of the Torsional Strength of PSC Beams Subjected to Pure Torsion (순수비틀림을 받는 프리스트레스트 콘크리트 보의 비틀림 강도 예측)

  • 박지선;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.179-184
    • /
    • 2002
  • The evaluation equation of torsional moment for prestressed concrete members in ACI 318-95 ignores the contribution of concrete, T$_{c}$. Several research indicates that the current ACI code is not successful in predicting the observed torsional moment of the PSC beams with reasonable accuracy. This paper proposes an evaluation equation of torsional moment taking into account the inter-effects between concrete and torsional reinforcement on the torsional resistance of the PSC beams. According to the comparison with the 31 test results, the torsion equation in ACI code underestimated or overestimated the real torsional moment of prestressed concrete beams. On the other hand, the proposed torsional equation is shown to be in a good agreement with experimental results.s.

  • PDF

Prediction of the Torsional Strength of RC Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 박지선;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.247-252
    • /
    • 2002
  • The evaluation equation of torsional moment for reinforced concrete members in ACI 318-99 ignores the contribution of concrete, T$_{c}$. Several research indicates that the torsional moment of concrete is in effect, specially for the members in which the longitudinal and transverse reinforcement content is small. This paper proposes an evaluation equation of torsional moment taking into account the contribution of concrete. According to the comparison with the 66 test results, the torsion equation in ACI code underestimated or overestimated the real torsional moment of reinforced concrete beams. On the other hand, the proposed torsional equation is shown to be in a good agreement with experimental results.s.

  • PDF

極小 Energy 定理와 그 應용 II

  • 양원호
    • Journal of the KSME
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 1980
  • 이상에서 potential energy의 극소조건을 각종경우에 적용하여 재료역학의 해 또는 변형의 근사 해를 응용 예들을 통하여 구해 보았다. 이 해법은 을 받은 부재, 보(beam) 또는 순수 비틀림을 받는 엔형봉재의 경우, 부정정 문제에서 그 지지점들에서의 반력요소를 생각할 필요가 없기 때 문에 재료 역학적인 해법보다 더 간편하게 구해지고 있는 것을 볼 수가 있다. 또 보의 처짐 곡 선이 길이의 중앙면에 대하여 좌우 대칭형일 때에, 중앙단면에서의 최대처짐을 구하는데 삼각 함수의 근사처짐 곡선을 설정하므로써 실제 엄밀해에 가까운 근사값이 간단하게 구해질 수 있는 것을 보였다. 이 극소에너지 정리는 엔형단면이 아닌 각종 단면봉재의 비틀림 문제에서도 비틀림 응력함수를 도입하고, 경제조전을 만족하는 근사공력 함수방정식을 가정함으로써 간단하게 그 근사해를 구하는 데까지 직장할 수가 있다.

  • PDF

A Study on the Behavior of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 거동에 관한 연구)

  • 음성우;박병용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • This paper presents an equation for balanced-steel ratio in longitudinal and transverse direction throughout analysis based on a space truss model introducing the concept of concrete softening effect. This paper also presents as equation for postcracking torisonal stiffness throughout analysis considering the equilibrium conditions and compatibility conditions based on shear panel. Correlation between predicted postcracking torsional stiffness, and experimental results was good, not only for beams tested in this paper but also for others in the literature.

  • PDF

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

A Numerical Study on Inelastic lateral Torsional Buckling Strength of Doubly Stepped and Singly Symmetric I-Beam Subjected to Uniform Moment (균일모멘트가 작용하는 일축대칭 I형 양단 스텝보의 비탄성 횡-비틀림 좌굴에 관한 해석적 연구)

  • Park, Yi Seul;Park, Jong Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3495-3501
    • /
    • 2013
  • The cross-sections of continuous multi-span beams are sometimes suddenly increased or stepped at the interior supports of continuous beams to resist high negative moments. This paper investigates inelastic lateral-torsional buckling of monosymmetric stepped I-beams subjected to pure bending. A three-dimensional finite-element program ABAQUS and a regression program were used to analytically develop new design equation. The flange thickness ratio, flange width ratio and stepped length ratio were considered as parameters of this study. The combined effects of residual stresses and geometric imperfection on inelastic lateral-torsional buckling of beams are considered. The proposed solution can be easily used to calculation for inelastic lateral torsional buckling strengths of monosymmetric beams with doubly stepped cross sections and to develop new design equations for inelastic lateral-torsional buckling resistances of stepped beams.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

The influence of intentional mobilization of implant fixtures before osseointegration (골유착전 임플란트 고정체의 의원성 동요가 골결합에 미치는 영향)

  • Cho, Jin-Hyun;Jo, Kwang-Heon;Cho, Sung-Am;Lee, Kyu-Bok;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of mobilization on bone-implant interface prior to osseointegration of fixtures. Materials and methods: The experimental implants (3.75 mm in diameter, 4.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P). The 80 implants (two in each tibia) were inserted into the monocortical tibias of 20 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 10 groups, Group I (6 wks), Group II (4 days+6 wks), Group III (4 days+1 wk+6 wks), Group IV (1 wk+6 wks), Group V (1 wk+1 wk+6 wks), Group VI (2 wks+6 wks), Group VII (2 wks+ 1 wk+6 wk), Group VIII (3 wks+6 wks), Group IX (3 wks+1 wk+6 wks) and Group X (10 wks). The control groups were Group I and X, the removal torque was measured at 6 wks and 10 wks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once or twice before the final removal torque and the value was measured each time. After which, the implants were put back where they had been except the control groups. All the experimental groups were given a final healing time (6 wks) before the final removal torque test, in which values were compared with the control groups and the 1st and/or 2nd removal torque values in each experimental group. Results: In the final removal torque tests, the removal torque value of Group X (10 wks) was higher than that of Group I (6 wks) in the control groups but not statistically different. There were no significant differences between the experimental groups and control groups (P>.05). In the first removal torque comparison, the experimental groups (4 days or 1 wk) values were significantly lower than the other experimental groups (2 wks or 3 wks). In the comparison of each experimental group according to healing time, the final removal torque value was significantly higher than the 1st torque test value. Conclusion: Once or twice mobilization of fixture prior to osseointegration did not deter the final bone to implant osseointegration, if sufficient healing time was given.

Evaluation of Lateral-Torsional Buckling Strength of I-Girder with Corrugated Web under Uniform Bending (균일한 휨모멘트가 작용하는 파형강판 복부판 I-거더의 횡-비틂 좌굴강도 평가)

  • Moon, Ji Ho;Yi, Jong Won;Choi, Byung Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • This paper presents theoretical and finite element analysis results for the lateral-torsional buckling of I-girders with corrugated web under uniform bending. Lateral-torsional buckling is a major design aspect for flexural members composed of thin-walled I-section. However, torsional rigidities such as the warping constants of the I-girders with corrugated web are not fully understood yet. In this paper, bending and pure torsional rigidities of I-girders with corrugated web are first described using the results of previous researchers. Then, the location of the shear center and the warping constants are derived. Using the derived section properties of I-girders with corrugated web, the lateral-torsional buckling strength is determined. Finite element analyses are conducted and the proposed lateral-torsional buckling strength of I-girders with corrugated web is successfully verified. Finally, the effects of corrugation profiles of the web on the lateral-torsional buckling load of I-girders with corrugated web are discussed.

Time-Dependent Analysis of Prestressed Concrete Members Subjected to Pure Torsion (순수 비틀림을 받는 프리스트레스트 콘크리트 부재의 장기거동에 관한 연구)

  • 오병환;박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.41-44
    • /
    • 1991
  • Time dependent analysis of prestressed concrete beams subjected to pure torsion is studied. The present theory covers the behavior from the service load range to the ultimate stage. The tensile resistance of concrete is appropriately considered. The biaxial stress effects due to diagonal cracking are also taken into account. The time dependent aging, creep and shringkage effects are modelled by employing the equivalent nonmechanical torque concept. The present theory allows more accurate prediction of the service load behavior of pretressed concrete members.

  • PDF