• Title/Summary/Keyword: 순동화율

Search Result 73, Processing Time 0.019 seconds

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Influence of Nutrient Supply on Growth, Mineral Nutrients and Carbohydrates in Cucumber (Cucumis sativus L.) (무기영양액 농도 차이가 오이 생육, 무기성분 흡수 및 탄수화물 합성에 미치는 영향)

  • Sung, Jwa-Kyung;Park, Sung-Yong;Lee, Su-Yeon;Lee, Ye-Jin;Lee, Ju-Young;Jang, Byong-Choon;Goh, Hyun-Gwan;Ok, Yong-Sik;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • We investigated the growth of cucumber plants, the uptake and use of mineral nutrients, such as $NO_3$-N, $NH_4$-N, $K^+$, $Ca^{+}^{+}$, $Mg^{+}^{+}$ and $Na^+$, absorbed from media solution, and the synthesis and distribution of soluble sugars under nutrient-deficient condition. Difference in plant growth revealed after 20 days of treatment. Nitrate uptake in nutrient-deficient condition was significantly reduced compared with nutrient-normal treatment, and its distribution was primarily in petioles, stem, roots and less in leaves. In contrast, ammonium content was markedly predominated in fast growing organs, and it was significantly different in growing leaves, expanded leaves, and roots under similar growth conditions. $K^+$, lack by deficient nutrient condition, was found in growing leaves. The $Ca^{+}^{+}$ content did not show significant difference between treatments and a substantial portion of $Ca^{+}^{+}$ remained in petioles. The $Mg^{+}^{+}$ content was significantly higher in the leaves of nutrient-normal condition compared with nutrient-deficient condition while significantly lower in stem and roots. The behavior of $Na^+$ in plant was similar to $K^+$ although its content was relatively little. The highest $CO_2$ assimilation was observed in fully expanded leaves of nutrient-normal condition, which was 1.7 times higher compared with nutrient-deficient condition. The instantaneous water use efficiency (A/E) and the A/gsratio, which is an index of leaf intrinsic water use efficiency for individual leaves, was 1.2 and 1.1 times higher, respectively. The total soluble sugar (TSS) contents were highest in leaves followed by petioles, stems and roots, and in younger leaves. The growing leaves contained about 7,200 mg $kg^{-1}$ of TSS in nutrient-normal condition whereas the TSS contents in nutrient-deficient condition were not significantly different between leaves. The $Mg^{+}^{+}$ and $NH_4$- N were positively correlated with the TSS whereas $NO_3$ - N was negatively correlated.

Effects of Spring Seeding Dates on Growth , Forage Yield and Quality of Early and Late Maturing Oat Cultivars (춘계 파종시기가 조.만생 연맥의 생장 , 사초수량 및 품질에 미치는 영향)

  • 김종림;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.2
    • /
    • pp.111-122
    • /
    • 1992
  • This experiment was conducted to determine the effects of spring seeding dates on the growth, yield and quality of early and late maturing spring oat (Auena sativa L.) cultivars on the forage experimental field, College of Agriculture, Seoul National University, Suwon from March to June, 1991. The experiment was arranged as a split plot with three replications. Oat cultivars, Cayuse and Speed oat, were the main plots, and seeding dates consisted of March 15, 22, 29, April 5 and 12 were the subplots. 1. A 7-day delay in seeding represents approximately 3~8 days being early in heading. The heading date of the early maturing cultivar, Speed oat, was 14 days earlier than that of the late maturing cultivar, Cayuse. 2. The concentrations of Crude protein (CP), Acid detergent fiber (ADF), Neutral detergent fiber (NDF) and zn uitro dry matter digestibility (IVDMD) of the late maturing cultivar, Cayuse, harvested May 29 were 19.6, 30.0, 44.9, and 82.7 %, respectively, but those of the early maturing cultivar, Speed oat, were 14.8. 33.3. 52.3, and 71.2 %, respectively. Chemical analyses of oat forage indicated that the contents of crude protein and lVDMD were increased from March 15 to April 12 seeding, while crude fiber was decreased. 3. Theaverage dry matter, IVDDM and CP yields of oats harvested May 29 were 2,960, 2,435 and 572 kg per ha, respectively with the late maturing cultivar. Cayuse. while the early maturing cultivar, Speed oat, recorded 3,255, 2.298 and 475 kg per ha, respectively. No significant dry matter yield differences were found among the different seeding dates of March 15, 22 and 29 for the two oat cultivars. but a significant yield decrease was found from April 5 seeding. No interactions in dry matter yield were observed between oat cultivars and seeding dates. 4. Maximum Leaf area index (LAI) and Leaf area index duration (LAID) were observed with earlier seeding and the LA1 of Cayuse cultivar was twice or three times as much as that of Speed oat cult~var as the growth progresses. 5. As the seeding date was earlier. the Crop growth rate (CGR) of the late maturing cultivar, Cayuse. was increased continuously. but that of the early maturing cultivar, Speed oat, was declined after May 29. This trend was also found on the Net assimilation rate (NAR) of Speed oat cultivar. The present experiment indicates that spring oats can be successfully produced as forages by seeding in March with early maturing cultivars.

  • PDF