• Title/Summary/Keyword: 숙취해소

Search Result 77, Processing Time 0.034 seconds

α-Glucosidase Inhibitory Effects for Solvent Fractions from Methanol Extracts of Sargassum fulvellum and Its Antioxidant and Alcohol-Metabolizing Activities (참모자반 메탄올 추출 분획물의 항산화 및 숙취해소능과 α-glucosidase 활성저해효과)

  • Kang, Su Hee;Cho, Eun Kyung;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1420-1427
    • /
    • 2012
  • We investigated the physiological activity and solvent-partitioned fractions of methanol extracts from the green seaweed Sargassum fulvellum. The methanol extract from S. fulvellum was sequentially fractionated with n-hexane (SFMH), methanol (SFMM), buthanol (SFMB), and water (SFMA). We investigated the antioxidant activities of solvent fractions from S. fulvellum by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity and an SOD activity assay. DPPH radical scavenging capacity of SFMM was 79.5% at 10 mg/ml. SOD activity of SFMM was 79.9% at 10 mg/ml. Nitrite scavenging activities of solvent fractions from S. fulvellum were investigated under different pH conditions and showed the most remarkable effect at pH 1.2. In particular, the activity of SFMB was higher than the other fractions. ADH activity and ALDH activity of SFMM were 177.0% and 167.4% at 10 mg/ml, respectively. ${\alpha}$-Glucosidase inhibitory activity of SFMH increased in a dose-dependent manner and was about 94.1% at 2 mg/ml. Elastase inhibitory activity was 93.2% at 2 mg/ml. These results revealed that S. fulvellum extracts have strong antioxidant and alcohol dehydrogenase activities and ${\alpha}$-glucosidase inhibitory activity, suggesting that S. fulvellum extracts have potential as a source of natural products for health and beauty.

ADH and ALDH Activation of Purified Bee Venom (Apis mellifera L.) (정제봉독의 ADH와 ALDH 활성 효과)

  • Han, Sang Mi;Hong, In Pyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.269-273
    • /
    • 2017
  • We investigated whether purified bee venom increases the enzymatic activity of the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). ADH and ALDH assay were tested by in vitro kits. The purified bee venom was assayed by ultra performance liquid chromatography, The contents of melittin, apamin and phospholipase A2, as main component of purified bee venom, were 63.9%, 2.3%, and 10.9%, respectively. The ADH and ALDH acitivity of purified bee venom(at 1mg/ml) were $88.6{\pm}7.34%$ and $94.6{\pm}0.57%$, respectively compared with positive control at 2mg/ml. These results showed that purified bee venom induces the activity of ADH and ALDH which reduce the aldehyde concentration in the blood, suggesting the possibility of purified bee venom as resource of medicine or functional beverage for hangover relieving.

Effect of New Remedies Mainly Comprised of Hovenia dulcis Thunb on Alcohol Degradation and Liver Protection in Sprague Dawley Male Rats (헛개나무 열매를 주성분으로 제조한 새로운 처방이 알코올 분해 및 간 손상에 미치는 영향)

  • Ko, Byoung-Seob;Jang, Jin-Sun;Hong, Sang-Mee;Kim, Dong-Wha;Sung, So-Ra;Park, Hae-Rae;Lee, Ji-Eun;Jeon, Won-Kyung;Park, Sun-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.828-834
    • /
    • 2006
  • We investigated whether two-kinds of mixture (NHDT-1 and NHDT-2) mainly composed of Hovenia dulcis Thunb had beneficial actions for alcohol and acetaldehyde degradation in acute alcohol treatment and liver protection from fatty liver induced by chronic alcohol administration. In acute alcohol degradation experiment, serum alcohol and acetaldehyde concentrations exhibited lower 1, 3 and 5 hours after taking 3 g ethanol per kg body weight in NHDT-1 treated rats, but not NHDT-2 including ginseng. On the contrast to the acute effect on alcohol degradation, the long-term alcohol administration revealed that NHDT-2, not NHDT-1, protected the increase in serum concentration of aspartate aminotransferase, alanine aminotrasferase and ${\gamma}-triglyceride$ metabolism similar to the rats not consuming alcohol, leading to decreased triglyceride accumulation in blood and liver. In liver morphological study, NHDT-1 preserved the regular hepatocyte morphology, decreased fat accumulation and reduced sinusoidal leukocyte infiltration in hepatocytes. In conclusion, NHDT-1 plays an important role in alcohol and acetaldehyde degradation without protecting liver damage while NHDT-2 works as hepatocyte protector from alcohol mediated damage.

Effect of Semisulcospira libertina Extracts from Different Extraction Processes on Liver Cell Toxicity and Ethanol Metabolism (간세포 독성과 에탄올 대사에서 추출 조건에 따른 다슬기 추출물의 효과)

  • Cho, Kyoung Hwan;Choo, Ho Jin;Seo, Min Gyun;Kim, Jong Cheol;Shin, Yu Jin;Ryu, Gi Hyung;Cho, Hee Young;Jeong, Chi-Young;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2017
  • Although Semisulcospira libertina is generally regarded as a supplement for the alleviation of alcohol hangover, little is known about its effects on cell metabolism. Therefore, this study was conducted to analyze the constituents of the extracts prepared using different extraction methods and to compare their biochemical properties. The amino acid contents were found to be much higher in acidic and enzymatic hydrolysates than hot water extracts from S. libertina. DPPH radical scavenging activities in acidic and enzymatic hydrolysates were higher than those of hot water extracts. Three types of S. libertina hydrolysate was added to HepG2 cells damaged by acetaminophen (AAP), after which the survival rate of HepG2 cell were measured. In addition, lactate dehydrogenase (LDH) activities in the culture media were evaluated. The survival rates of HepG2 cells were $77.0{\pm}4.3%$ and $81.5{\pm}1.3%$ at 3 h and 5h enzymatic hydrolysates, respectively. These cell survival rates were higher compared to those of the negative control group ($67.8{\pm}4.3%$) treated only with acetaminophen. Cellular toxicities induced by treatment with AAP were also significantly alleviated in response to treatment with the extracts of S. libertina. In addition, the activities of 2 key enzymes that metabolize ethanol, alcohol dehydrogenase and aldehyde dehydrogenase, were upregulated by 4.7- and 2.7-fold respectively in response to treatment with a 3 h enzymatic hydrolysate of S. libertina. Taken together, these results provide biochemical evidence of the method by which S. libertina exerts its biological functions, including the alleviation of alcohol hangover and the protection of liver cells against toxic insults.

Hangover relieving effect of Sanghwang mushroom mycelium extract (상황버섯 균사체 추출물의 숙취해소 효과에 관한 연구)

  • Kim, Min-Su;An, Yoo-Jin;Lee, Jae-Chul;Park, Ga-Ryoung;Park, Dong Soo;Jeon, Nam Gen;Lee, Youngjae;Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • This study was conducted to evaluate the hangover relieving effect of Sanghwang mushroom mycelium extract (SME). The extract showed 1,1-diphenyl-2-picrylhydrazyl radical scavenging effect in a concentration-dependent manner and high antioxidant capacity ($56.67{\pm}1.77%$) when administered at $120{\mu}g/mL$. In addition, SME significantly increased (p < 0.005) the aldehyde dehydronase (ALDH) activity ($126.03{\pm}9.11%$) when applied at 8 or $16{\mu}L/mL$. A locomotor activity test showed that the alcohol-water treated group showed significantly decreased motor activity at 90 min post-administration. However, the alcohol-SME treated group showed a 20-fold higher motor activity than that observed in the alcohol-water treated group at 90 min post-administration. Blood was harvested from each mouse at 90 min post-administration, and both alcohol and aldehyde concentrations were measured. The alcohol-SME treated group showed significantly lower (p < 0.5) alcohol ($120.13{\pm}12.83{\mu}g/mL$) and aldehyde ($7.26{\pm}1.22{\mu}g/mL$) concentrations than the values observed in the alcohol-water treated group. These results suggest that the hangover relieving effect of SME results from increased ALDH activity, which reduces the aldehyde concentration in the blood.

Effect of Maesil (Prunus mume) Juice on the Alcohol Metabolizing Enzyme Activities (매실즙이 알코올대사 효소활성에 미치는 영향)

  • Hwang, Ja-Young;Ham, Jae-Woong;Nam, Sung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.329-332
    • /
    • 2004
  • Changes in activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in vitro were examined by measuring maximum absorbances of ADH and ALDH at 340 nm to determine influence of Maesil (Prunus mume) on alcohol metabolism. Facilitating rates of ADH activity were 137.92, 131.58, 152,96, 218.70, 111.76, and 144.27% in Maesil juice, 5, 10, and 15% GMT, and 0.5 and 1.0% aspartic acid, respectively, ALDH activity increased in the order of Maesil juice > ALDH > GMT > aspartic acid, and facilitating rate of ALDH activity in Maesil juice was the highest at 976.44%. These results indicate alcohol metabolizing activity can be enhanced by Maesil juice.

A Study on the Extraction and Efficacy of Bioactive Compound from Hovenia dulcis (헛개나무로부터 생리활성물질의 추출 및 효능에 관한 연구)

  • Kim Sung-Mun;Kang Sung-Hee;Ma Jin-Yeul;Kim Jin-Hyun
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.11-15
    • /
    • 2006
  • The biological activities of extracts from the fruit, stem, and leaf of Hovenia dulcis were examined. In the batch mode of operation, the fruit, stem, and leaf of Hovenia dulcis were extracted with hot water for 10 hr. The fruit extract of Hovenia dulcis gave the highest activity for decreasing alcohol concentration which was 138% of control. The equilibrium between bioactive compound in the fruit (size : 4 mm) and hot water solution was reached within 6 hr and the recovery was 95% by three-times extraction. The fruit extract of Hovenia dulcis showed significant alcohol decrease in blood and hepatoprotective activity against $CCl_4$-toxicity in rat. The fruit extract significantly inhibited the elevation of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels.

Effect of Medicinal Plant Extracts on the Ethanol-Metabolizing Enzyme Activities (약용식물 추출물의 에탄올대사 효소활성에 미치는 영향)

  • Do, Jaeho;Gwak, Jungwon;Lee, Sunjeong;Rho, Jung Jin;Lee, Kwangseung;Kim, Dong Chung
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.286-291
    • /
    • 2017
  • This study was conducted to certify the effect of aqueous extracts from fifty medicinal plants on the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in vitro. Each aqueous extract was prepared by combining one-part medicinal plants with twenty-parts distilled water at $80^{\circ}C$ for 8 h. Among the fifty medicinal plants, Allium sativum L. and Cinnamomum cassia Presl were regarded as an effective anti-hangover substance. Allium sativum L. extract increased ALDH activity more than 2 times compared with ADH activity, enhancing the acetaldehyde degradation. Cinnamomum cassia Presl extract dramatically inhibited ADH activity compared with ALDH activity, thus potently decreasing the acetaldehyde formation. ADH and ALDH activities were proportionally inhibited according to the increased concentration of Cinnamomum cassia Presl extract. The aqueous extract of Cinnamomum cassia Presl at a concentration of $45.33{\mu}g/mL$ inhibited ADH activity by 52.8% and ALDH activity by 11.0%.

Antioxidant and Hangover Cure Effects of Compound Prescription Containing Phyllanthus emblica and Azadirachta Indica Leaf Extract (인디언구스베리와 님잎 추출물을 함유한 복합 처방의 항산화 및 숙취해소 효과)

  • Lee, Su-Bin;Joo, In-Hwan;Park, Jong-Min;Han, Su-Hyun;Wi, Young-Joon;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.5
    • /
    • pp.229-237
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant and hangover cure effects of compound prescription containing Phyllanthus emblica and Azadirachta Indica leaf extract (CP). In vitro experiments, HepG2 cells were induced oxidative stress by hydrogen peroxide (H2O2) and treated with CP at 50, 100, 200 ㎍/㎖ concentration. Antioxidant enzyme (superoxide dismutase (SOD), catalse (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) activity and glutathione (GSH) content were decreased by hydrogen peroxide-induced oxidative stress, but CP was increased that. In vivo experiments, experiment rats were orally administered alcohol 3 g/kg and, after 30 min administered CP 200 mg/kg. After 1 and 3 h of alcohol administration, blood was collected from the tail vein, while after 5 h, blood was collected from the heart. CP modulates alcohol dehydrogenase (ADH) and acetaldehyde level, thereby decreased alcohol level in serum. Also, CP decreased the levels of aspartate aminotransferase (AST) and alkaline phosphatase (ALP). These results suggest that CP has antioxidant effects and alleviates alcohol hangover symptoms.