• Title/Summary/Keyword: 수-저질 생태계모델

Search Result 10, Processing Time 0.022 seconds

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Long Term Chlorophyll-a Prediction Based on the Rise in Sea-Water Temperature Using the Eco-Hydrodynamic Model in the Yellow Sea (생태-유체역학 모델을 이용한 해수 수온 상승에 따른 황해 Chlorophyll-a의 장기 변화 예측)

  • Kwoun, Chul-Hui;Kwon, Min-Sun;Han, In-Sung;Seo, Young-Sang;Hwang, Jae-Dong;Kang, Hoon;Lee, Nam-Do
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.4
    • /
    • pp.367-380
    • /
    • 2010
  • 수산 해양환경적 측면에서 중요한 위치에 있는 황해(Yellow Sea)의 해양 생태계 변화과정에 대 한 체계적이고 심층적인 연구을 위하여 기후 변화와 관련된 생태 및 환경변화에 대한 황해 해역의 반응성 연구가 필요한 실정이다. 본 연구는 황해해역에서 수온 상승에 따른 클로로필의 변화를 살펴보고, 지구온난화가 해양환경과 생태계에 미칠 영향을 예측하고자 하였다. 황해해역에서 해수유동 모델의 결과를 기초 입력자료로 활용하여 클로로필과 상호작용을 하는 육상유입부하량, 저질 영양 염용출량 및 생물학적 파라메타 등을 입력하여 현재상태를 재현하였다. 우리나라 주변 해수의 온도가 지난 10년간 약 $0.75^{\circ}C$ 상승했다고 가정하였을 때, 본 실험에서는 수온이 선형적으로 연간 $0.075^{\circ}C$ 씩 상승한다고 가정하여 10년 후까지의 Chlorophyll-a 농도 변화를 예측하였다. 예측 결과, 연구해역의 중앙부에서는 전체적으로 농도가 높아지고, 우리나라 연안해역에서 Chlorophyll-a 의 농도가 낮아지는 것으로 예측되었다. 본 연구의 결과를 기초로 하여 10년 이상의 장기적인 예측실험을 한다면 기후변화가 황해해역의 생태계 변화에 미치는 영향을 파악할 수 있을 것으로 기대된다.

Quantitative Assessment of the Effects of Sediment Dredging on Water Quality in Masan Bay using Ecosystem Model (생태계 모델을 이용한 마산만 퇴적물 준설이 수질에 미치는 영향 정량평가)

  • Kim, Jin-Ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.521-526
    • /
    • 2016
  • Sediment dredging can permanently remove pollutants from an aquatic ecosystem, which is considered an effective approach to aquatic ecosystem restoration. In this study, we quantified the effects of sediment dredging on water quality in Masan Bay by calculation of oxygen demanding rate. We applied ecosystem model including water and sediment quality module in Masan Bay. The results showed that the increase of calculated oxygen demanding rate is significant due to sediment dredging of both inner part and outer part of Masan Bay. On the other hand, the increase is gradual due to decrease of anthropogenic load. It meant sediment dredging can improve water quality of Masan Bay more. Using correlation equation between oxygen demanding rate and sediment oxygen demand, we calculated that the area of sediment dredging which is equal to the effects of 10 % reduction of anthropogenic load. It is $1.68km^2$ in inner part and $3.15km^2$ in outer part of the Masan Bay. This Meant that to improve water quality of Masan Bay, sediment dredging in inner part is efficient method.

Modeling for the fate of Organic Chemicals in a Multi-media Environment Using MUSEM (다매체 환경 모델 MUSEM을 이용한 유해화학물질의 환경거동예측 모델링)

  • Roh, Kyong-Joon;Kim, Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Pollution by chemical substances such as POPs, EDCs and PBTs in the ecosystem has become more complex and varied, increasing the possibility of irreversible damage to human health or the ecosystem. It is necessary to have a exposure assessment in a multi-media environment for various chemical substances is required for efficient management. This study applied MUSEM(Multi-media Simplebox-systems Environmental Model), a multimedia environmental model that can simultaneously evaluate the possibility of exposure of hundreds of chemical substances in order to efficiently manage chemical substances that can have negative impact on human health or ecological environment through environmental contamination. MUSEM executed the modeling for Japan by setting all 47 prefectures of japan as the regional area for 62 chemical substances and the rest of the territory of japan, excluding regional area, as the continental area and made the estimation of concentration among environment media in each administrative area and made the sensitivity analysis on Tokyo area. The results of simulation for chemical distribution showed that most of the target chemicals located in water region. The result of sensitivity analysis for octanol-water partition rate showed that the concentration change of soil in urban/industrial area and sediment in freshwater was high. In the case of sensitivity analysis for degradation rate showed that the concentration change of freshwater, soil in urban/industrial area, and sediment in freshwater was high.

  • PDF

Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay (생태계모텔에 의한 진해만의 빈산소수괴 저감예측)

  • Lee, In-Cheol;Kong, Hwa-Hun;Yoon, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • As a basic study for establishing a countermeasure for an oxygen deficient water mass (ODW), we investigated the variation of ODW volume according to the enforced total pollution load management in Jinhae Bay. This study estimated the inflowing pollutant loads into Jinhae Bay and predicted the reduction in ODW by using a sediment-water ecological model (SWEM). The result obtained in this study are summarized as follows: 1) The daily average pollutant loads of COD, SS, TN, TP, DIN, and DIP inflowing into Jinhae bay in 2005 were estimated to be about 12,218 kg-COD/day, 91,884 kg-SS/day, 5,292 kg-TN/day, 182 kg-TP/day, 4,236 kg-DIN/day, and 130 kg-DIP/day. 2) The calculated results of the tidal current by the hydrodynamic model showed good agreement with the observed currents. Also, an ecological model well reproduced the spatial distribution of the water quality in the bay. 3) This study defined the ODWDI (ODW decreasing index) in order to estimate the ODW decreasing volume caused by a reduction in the inflowing pollutant loads. As a result, the ODWDI was predicted to be about 0.91 (COD 30% reduction), 0.87 (COD 50% reduction), 0.79 (COD 70% reduction), 0.85 (ALL 30% reduction), 0.66 (ALL 50% reduction), and 0.45 (ALL 70% reduction). The ODW volume was decreased 1.5 $\sim$ 2.6 times with a reduction in the COD, TN, and TP inflowing pollutant loads compared to a reduction in just the COD inflowing pollutant load. Therefore, it is necessary to enforce total pollution load management, not only for COD, but also fm TN and TP.

Regional Development and the Improvement of Water Quality using Bivalves in Lake Suwa (Japan) (조개를 이용한 일본 수와호의 수질개선과 지역발전의 역사)

  • Okino, Tokio
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.1-9
    • /
    • 2014
  • Lake Suwa is a natural lake which is well-known for sightseeing and fisheries. It had suffered severe eutrophication during 1960s and 1970s with the occurrence of cyanobacterial blooms and the extinction of some benthic animals. Since 1980 water quality has been improved due to efforts of local government, scientists, and citizens. Of various methods that were attempted to improve the water quality of Lake Suwa biological methods received much attention, because it can improve the lake ecosystem integrity and fisheries in addition to the water quality. The aim of this paper is to introduce the biological methods for water quality improvement that had been employed in Lake Suwa, Japan, and their contribution to the economic benefit of local residents. Until now a significant restoration of water quality has been achieved, but there are insufficient recovery of the sediment and biota due to anoxic hypolimnion of the lake. This study proposed suspended cage culture of bivalves as a feasible method of water quality improvement. Increased grazing by bivalves will contribute to the improvement of water quality and fisheries production, which will contribute both to the ecological restoration and economy of local residents.

Ecosystem Modelling for Improvement Summer Water Quality of Jinhae Bay in 2003 (2003년 하계 진해만 수질 개선을 위한 생태계 모델링)

  • Hong, Sok-Jin;Lee, Won-Chan;Jung, Rea-Hong;Oh, Hyun-Tek;Jang, Ju-Hyung;Goo, Jun-Ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.103-110
    • /
    • 2007
  • This study estirmted the appropriate pollutant load reduction from point sources in Jinhae Bay, Korea, using an eco system model. The results of COD values in the inner part of the bay obtained through the simulation by ecosystem model were greater than 3.0mg/L, and exceeded the limits of Korean Coastal Water Quality Grade III. Engineering countermeasures to reduce the $70\sim90%$ of all land based pollution load or organic and inorganic material loads from point sources by more than 50% were required to keep the COD levels below 2 mg/L. The reduction loads is 5,632kg/day of COD, 481kg/day of DIP and 7,991 kg/day of DIN in case of the reduction of both the organic and nutrients. The estimated environmental currying capacity of that case is 13,112kg/day of COD, 206kg/day of DIP and 3,425kg/day of DIN to keep the COD levels below 2mg/L.

  • PDF

Ecological Health Assessment Based on Fish Assemblages Along with Total Mercury Concentrations of Zacco platypus in Miho Stream (어류 군집을 이용한 미호천의 생태 건강성 평가 및 피라미(Zacco platypus)의 총수은 함량)

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.288-297
    • /
    • 2010
  • This study was to evaluate the ecological stream health through the Multimetric Fish Assessment Index (MFAI) along with fish fauna analysis based on the tolerance and trophic guilds at Miho stream in 2008 and 2009. Also, we analysed total mercury concentration in fish tissues to examine heavy metal contamination. Total sampled fish were 40 species and 2,557 individuals and Zacco platypus was the most dominant with 35% relative abundance. It was sampled with 11.4% RA for Korean endemic species (10 species 291 individuals) less than average RA 39.3% for the Geum river watersheds. According to the tolarance guild analysis, tolerant species was more dominant with 58.9% RA (15 species, 1,507 individuals) than sensitive species with 6.6% RA. Trophic guild analysis also suggested that omnivores were more dominant (60.5% RA) than insectivores (31.5% RA). Riffle-benthic species was also sampled with 7.7% RA. Ecological stream health based on the MFAI were averaged 25.3 (n=3) with fair-poor condition in 2008 and also 26.3 (n=3) with fair condition in 2009, just slightly increased than 2008. Qualitative habitat evaluation index was averaged 134 (n=3) with fair condition but most of sites had sediment accumulation that reflected substrate degradations proceeding. From the result of total mercury accumulation in fish tissues, kidney and liver tissues showed the highest but the lowest for gill tissues. Overall mercury concentration were not exceed the national standards by Korean Federation of Drug and Administration (KFDA). Consequently, our result could correspond with the characteristics of Miho stream where point sources such industrial complexes and wastewater treatment plant widely distributed around the stream along the gradient of up and downstream.

The Impact of Monsoon on Seasonal Variability of Basin Morphology and Hydrology (호수 지형 및 수리수문학적 변화에 대한 몬순 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.342-349
    • /
    • 2000
  • This paper demonstrates the influence of intensity of the monsoon on morpho-hydrological fluctuations in Taechung Reservoir during 1993${\sim}$1994. During the study, hydrological variables including rainfall, inflow, and discharge volume showed distinct contrast between 1993 and 1994. Interannaul differences in rainfall occurred during the monsoon in July${\sim}$August monsoon and influenced inflow, discharge, and water residence time (WRT). Total inflow in 1993 was four times greater than that of 1994, and summer inflow in 1993 was 8 times greater than summer 1994. Annual Mean WRT was 93.2 d in 1993 vs. 158.6 d in 1994 and the largest differences occurred between monsoons of 1993 and 1994. Morphometric variables reflected the interannual contrasts of hydrology, so that in 1993 surface area, total volume, shoreline development, and mean depth increased consistently from premonsoon to postmonsoon and over this same period in 1994 they decreased. This outcome indicates that the area of shallow littoral zones in 1993 was greater than in 1994. Also, the drainage area to surface area (D/L) at 80 m MSL was 60.7 which was much greater than values in Soyang and Andong reservoirs and natural lakes world-wide. The morpho-hydrodynamic conditions seemed to influence in-reservoir nutrient concentration which is one of the most important factors regulating the eutrophication processes. I believe, under the maximum hydrodynamic fluctuations in Korean waterbodies during the monsoon, applications of mass balance models to man-made lakes for assessments of external loading should be considered because the models can be used under the seasonally stable inflow and water residence time.

  • PDF