• Title/Summary/Keyword: 수확환경

Search Result 1,002, Processing Time 0.03 seconds

Favorable Irrigation Timing with Timer and Fruiting Position Focused on the Fruit Quality and Harvesting Time in Perlite Culture of Muskmelon (멜론의 펄라이트 재배시 타이머 제어에 의한 급액 시간과 착과절위가 과실의 품질과 수확시기에 미치는 영향)

  • Kim, H. J.;Kim, Y. S.
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.157-162
    • /
    • 2002
  • The efficient timer-controlled irrigation and the favorable fruiting position were investigated far highly quality melon fruits from Feb.18 to July Si 1999. The nutrient solution was supplied either at every hour from 6:00 to 18:00 (T-1) or at 6:00, 8:00, 10:00, 11:00, 12:00, 12:30, 13:00, 13:30, 14:00, 14:30, IS:00,16:00, and 17:00 (T-2). A fruit was set at the first node of the fruit bearing branch from the 10, 12, or 13th node of the main stem. Pot weight was maintained at almost n constant level, regardless of the daily integrated solar radiation in T-2. Soluble solids content (SSC) and fresh weight of fruit were not significantly different among the irrigation treatments at each harvesting time. At the first harvest, SSC and fresh weight of fruit were not significantly different between the fruiting positions within the irrigation treatment. At the second harvest, SSC was higher in T-2 than T-1. The SSC was low in the fruit of the loth node in T-1, while it was not significantly different between fruiting positions in T-2. Fruit fresh weight was the highest at the 12 and 13th nodes in T-1, and the 13th node in T-2. Fresh and dry weights of leaf except petiole, regardless of harvesting time, increased as the node position was higher, The higher the fruiting position was, the lower the leaf weight was. Therefore, it is recommended to irrigate more frequently during the mid-noon. Fruits can be harvested earlier at the lower nodes in the spring crop production.

Tuber Yield and Size Distribution of Potato 'Dejima' (Solanum tuberosum L.) Affected by Stem Cutting Ages and Harvest Time in Aeroponics (경삽묘 연령과 수확시기가 분무경재배 씨감자 '대지'의 생육과 수량에 미치는 영향)

  • Chae, Won-Byoung;Ahn, Seung-Joon;Choi, Hak-Soon;Kwack, Yong-Bum;Goo, Dae-Hoe;Jeong, Myeong-Il
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.261-265
    • /
    • 2008
  • This study was carried out to investigate the effects of stem cutting ages and harvest time on the growth and yield of potato 'Dejima' in aeroponics. The stem cuttings were produced from in vitro plantlets and transplanted into an aeroponic system with 20, 30, 40 and 50 day-old stem cuttings (DOS). Tubers were harvested 60, 70, 80 and 90 days after transplanting (DAT) and sorted into following categories: $1{\sim}5$, $5{\sim}10$, $10{\sim}20$, $20{\sim}30$, $30{\sim}40$ and over 40 g. Plant height from the 40 DOS was the highest during the growing periods but no significant difference was observed on 75 DAT. The tuber weight increased until 90 DAT with the greatest weight of tubers in the 20 and 40 DOS. However, there was no significant difference among 20, 30 and 40 DOS in the number and weight of tubers. Harvesting at 80 and 90 DAT increased the number of tubers over 5 g, which are usually considered as appropriate for direct field planting.

Development of Photosynthesis Efficiency Model in the Closed Plant Production System (폐쇄형 식물 생산시스템내의 광합성효율 모델 개발)

  • 김기성;김문기
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.11a
    • /
    • pp.293-297
    • /
    • 2002
  • 폐쇄형 식물 생산 시스템에서 생산되는 식물은 생장속도가 빠르기 때문에 생장속도를 제어하거나 예측할 수 없어 수확적기를 놓치면 품질이 현저히 떨어져 상품성이 저하된다. 이를 해결하기 위해서는 식물생장기간 동안 식물에 따라 적절한 생장환경을 조성하여 생장정도를 균일하게 할 수 있는 최적 환경제어가 필요하다. 본 연구에서는 폐쇄형 식물 생산시스템의 최적 환경제어를 위하여 엽록소형광분석법을 이용하여 상추를 중심으로 광합성효율 모델(photosynthesis efficiency model ; PEM)을 개발하였다. (중략)

  • PDF

Growth Model of Leaf Lettuce Based on the Cumulative Photosynthetic Photon Flux Density (적산일사량에 따른 상추 생육모델)

  • 문보흠;이병일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • 채소는 다른 작물에 비해 생육기간이 매우 짧기 때문에 환경의 영향을 많이 받는다. 특히 환경이 제어되는 시설에서 양액재배를 할 경우에는 생육이 왕성하므로 노지에 비해 재배기간을 단축시킬 수 있으며, 근권부 양액제어나 지상부 환경제어를 통해 고품질 채소를 생산할 수 있는 장점이 있다. 따라서 빠른 생육을 제어하거나 예측할 수 없어 수확적기를 놓치면 외관적 품질이 현저히 떨어지고 질적 품질도 저하하여 소비자의 기호에 맞추기 힘들게 된다. (중략)

  • PDF

Current Research Status of Postharvest and Packaging Technology of Oriental Melon (Cucumis melo var. makuwa) in Korea (국내 참외의 수확 후 관리 및 포장기술 연구)

  • Kim, Jung-Soo;Choi, Hong-Ryul;Chung, Dae-Sung;Lee, Youn-Suk
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.902-911
    • /
    • 2010
  • Oriental melon ($Cucumis$ $melo$ var. $makuwa$) is a popular and high-value market fruit cultivated in Korea. Consumers are becoming increasingly interested in oriental melon as a healthy diet over the past few years. However, the melons have relatively high quality loss because the fruit are mainly produced for a limited period of time in the summer season. Lack of the proper postharvest treatments and high temperature exposure at harvest or during distribution are the most critical environmental factors limiting postharvest life of fruit. This review focuses on the overview of current research studies for postharvest treatment and functional packaging technology of oriental melon in Korea. Major physiological problems of the harvest fruit include the ripening process in quality changes of the produce such as loss of weight, firmness, flavor, and decay during the storage periods. Low temperature at 7 to $10^{\circ}C$ with high relative humidity of 90 to 95% is the suitable environmental condition used to maintain the quality of fresh oriental melon. Controlled atmosphere (CA) storage or modified atmosphere (MA) packaging can be used as supplemental treatments to extend postharvest-life. For oriental melon, an optimum CA is currently recommended to be 2-3% oxygen and 5-10% carbon dioxide atmosphere. Precooling, pretreatments of ethylene action and functional packaging system can be applied to oriental melon after harvest in order to extend storage life. Major active packaging technologies are concerned with a selectively gas permeable film related to respiration of produce and the packaging applications of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness of fruit.

Change of amino acids contents of Gastrodia elata Blume with harvest times and seed tuber (수확시기와 자마의 특성별 천마의 아미노산 함량 변화)

  • Kim, Hyun-Tae;Park, Eung-Jun
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.229-235
    • /
    • 2014
  • Gastrodia elata Blume, an achlorophyllous orchid plant, has been used in traditional medicine and harvests in spring and fall. Here we investigated the quantitative changes of amino acids in G. elata by harvest times and seed tubers. In the results, we found that there was not big difference in contents of total amino acids but the distribution of amino acids differed depending on harvest times. 19% of total amino acids were asparagin and valine, an essential amino acid, occupied 10% within total amino acids in the tubers harvested in October. Among amino acids in the tubers harvested in April, serine occupied 23% and arginine, an essential amino acid, occupied 10% within total amino acids in tuber. Interestingly, the use of sexually propagated seed tubers produced high concentration of total amino acids compared to vegetatively propagated seed tubers. As for sexually propagated seed tubers, essential amino acids contents similar to the tubes harvested in October and nonessential amino acids contents similar to the tubers harvested in April. In this study, we found that amino acids contents in G. elata tubers altered depending on various cultivation practices. Therefore if these results can be applied to food industry, the value of G. elata as a natural food resource will be enhanced to a great extent.

Hydroponic Culture System for Wasabi Leaf Production (고추냉이 잎 생산을 위한 수경재배)

  • Choi, Ki-Young;Lee, Yong-Beom;Lee, Joo-Hyun;Nasangargale, T.
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • This experiment was conducted to possibility for leaf production of wasabi using hydroponics system. When they were grown in aeroponics and soiless culture such as saprolite and Coir, photosynthesis and transpiration rate were high and marketable yield $(leaf\;width\;11{\sim}13cm)$ showed $11.2{\sim}11.7$ of leaf number per plant and $52{\sim}53.8g$ fresh weight. In spring periods, the highest yield was 25.7 of leaf number per plant in nutrient solution of Yamasaki's solution developed in Japan in deep culture during 130 days. It showed be possibility that marketable leaves harvested one leaf every $2{\sim}4$ days though spring and fall culture periods using hydroponics controlled in environmental culture.

Effects of Cultivation Method on the Growth and Yield of a Cucumber for Development of a Robotic Harvester (오이수확용 로봇개발을 위한 재배방식이 생육 및 수량에 미치는 영향)

  • Lee, Dae-Won;Min, Byung-Ro;Kim, Hyun-Tae;Im, Ki-Taek;Kim, Woong;Kwon, Young-Sam;Nam, Yooun-Il;Choi, Jae-Woong;Sung, Si-Hong
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.226-236
    • /
    • 1998
  • If the lowest leaves of the cucumber were removed or training cultivable method was changed, a computer vision system could divide well the cucumber fruit from the others, and also an end-effector could reach and grip cucumber fruit and cut well its fruit stalk. Therefore, this study investigated whether removal leaves and training cultivable method of a cucumber could affect its growth and yield. They can help to be designed the vision system and the end-effector. A cucumber fruit grew by 6-l5cm long for 2 days regardless of removing leaves. Removal leaves didn't affect growth of cucumber fruit. Number of cucumber fruit was produced within 10% different values by three methods (A, B, C) of removal leaves. The first grade rate (best quality) of 4 B and C was 56.7%, 53.1%, 56.3% respectively. Consequently, proper removal leaves were better than traditional way, which does not remove a leaf, because they make cucumber plant ventilate more freely and absorb more light.

  • PDF