• Title/Summary/Keyword: 수확량

Search Result 1,463, Processing Time 0.023 seconds

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

Studies on the Estimation of Leaf Production in Mulberry Trees 1. Estimation of the leaf production by leaf area determination (상엽 수확고 측정에 관한 연구 - 제1보 엽면적에 의한 상엽량의 순서 -)

  • 한경수;장권열;안정준
    • Journal of Sericultural and Entomological Science
    • /
    • v.8
    • /
    • pp.11-25
    • /
    • 1968
  • Various formulae for estimation of leaf production in mulberry trees were investigated and obtained. Four varieties of mulberry trees were used as the materials, and seven characters namely branch length. branch diameter, node number per branch, total branch weight, branch weight except leaves, leaf weight and leaf area, were studied. The formulae to estimate the leaf yield of mulberry trees are as follows: 1. Varietal differences were appeared in means, variances, standard devitations and standard errors of seven characters studied as shown in table 1. 2. Y$_1$=a$_1$X$_1$${\times}$P$_1$......(l) where Y$_1$ means yield per l0a by branch number and leaf weight determination. a$_1$.........leaf weight per branch. X$_1$.......branch number per plant. P$_1$........plant number per l0a. 3. Y$_2$=(a$_2$${\pm}$S. E.${\times}$X$_2$)+P$_1$.......(2) where Y$_2$ means leaf yield per l0a by branch length and leaf weight determination. a$_2$......leaf weight per meter of branch length. S. E. ......standard error. X$_2$....total branch length per plant. P$_1$........plant number per l0a as written above. 4. Y$_3$=(a$_3$${\pm}$S. E${\times}$X$_3$)${\times}$P$_1$.....(3) where Y$_3$ means of yield per l0a by branch diameter measurement. a$_3$.......leaf weight per 1cm of branch diameter. X$_3$......total branch diameter per plant. 5. Y$_4$=(a$_4$${\pm}$S. E.${\times}$X$_4$)P$_1$......(4) where Y$_4$ means leaf yield per 10a by node number determination. a$_4$.......leaf weight per node X$_4$.....total node number per plant. 6. Y$\sub$5/= {(a$\sub$5/${\pm}$S. E.${\times}$X$_2$)Kv}${\times}$P$_1$.......(5) where Y$\sub$5/ means leaf yield per l0a by branch length and leaf area measurement. a$\sub$5/......leaf area per 1 meter of branch length. K$\sub$v/......leaf weight per 100$\textrm{cm}^2$ of leaf area. 7. Y$\sub$6/={(X$_2$$\div$a$\sub$6/${\pm}$S. E.)}${\times}$K$\sub$v/${\times}$P$_1$......(6) where Y$\sub$6/ means leaf yield estimated by leaf area and branch length measurement. a$\sub$6/......branch length per l00$\textrm{cm}^2$ of leaf area. X$_2$, K$\sub$v/ and P$_1$ are written above. 8. Y$\sub$7/= {(a$\sub$7/${\pm}$S. E. ${\times}$X$_3$)}${\times}$K$\sub$v/${\times}$P$_1$.......(7) where Y$\sub$7/ means leaf yield estimates by branch diameter and leaf area measurement. a$\sub$7/......leaf area per lcm of branch diameter. X$_3$, K$\sub$v/ and P$_1$ are written above. 9. Y$\sub$8/= {(X$_3$$\div$a$\sub$8/${\pm}$S. E.)}${\times}$K$\sub$v/${\times}$P$_1$.......(8) where Y$\sub$8/ means leaf yield estimates by leaf area branch diameter. a$\sub$8/......branch diameter per l00$\textrm{cm}^2$ of leaf area. X$_3$, K$\sub$v/, P$_1$ are written above. 10. Y$\sub$9/= {(a$\sub$9/${\pm}$S. E.${\times}$X$_4$)${\times}$K$\sub$v/}${\times}$P$_1$......(9) where Y$\sub$7/ means leaf yield estimates by node number and leaf measurement. a$\sub$9/......leaf area per node of branch. X$_4$, K$\sub$v/, P$_1$ are written above. 11. Y$\sub$10/= {(X$_4$$\div$a$\sub$10/$\div$S. E.)${\times}$K$\sub$v/}${\times}$P$_1$.......(10) where Y$\sub$10/ means leaf yield estimates by leaf area and node number determination. a$\sub$10/.....node number per l00$\textrm{cm}^2$ of leaf area. X$_4$, K$\sub$v/, P$_1$ are written above. Among many estimation methods. estimation method by the branch is the better than the methods by the measurement of node number and branch diameter. Estimation method, by branch length and leaf area determination, by formulae (6), could be the best method to determine the leaf yield of mulberry trees without destroying the leaves and without weighting the leaves of mulberry trees.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF