• Title/Summary/Keyword: 수화열저감

Search Result 114, Processing Time 0.027 seconds

Hydration Heat Control of Marine Pier Foundation using Low-Heat Cement and Mesh Form (저발열 콘크리트와 Mesh형 거푸집을 이용한 교각기초의 수화열 저감 방안 연구)

  • Cho, Yong-Yeon;Lee, Won-Joon;Won, Jong-Hwa;Kim, Tae-Min;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.315-318
    • /
    • 2009
  • 본 논문에서는 해상 기초 교각 매스 콘크리트의 수화열 저감 방안을 다루었다. 저발열 콘크리트, Mesh형 거푸집 공법 등에 대한 실험을 수행하여 각각의 수화열 저감효과를 평가하였다. 현장 실험은 사용 시멘트와 거푸집의 종류, 거푸집의 사용 면수에 따라 총 4 type으로 구성하였으며, 이에 대한 실험 결과와 유한 요소 해석 결과를 비교, 검증하여 최종적인 수화열 저감 성능을 도출하고자 하였다. 실험을 통해, 저발열 시멘트와 유로폼을 사용하는 것이 수화열 저감을 위해 효과적인 방법으로 판명되었으나 추가 공사비의 발생으로 효율성이 떨어질 것으로 판단된다. 또한 Mesh형 거푸집 적용 면 수와 온도 상승 저감 효과는 비례하는 것을 알 수 있었지만 내 외부 온도차가 다소 크게 나타나 수화열에 의한 균열 발생 확률면에서는 다소 불리하게 나타났다. 그러나 실험 단계에서 생략된 양생과 관리를 통하여 균열의 저감효과를 거둘 수 있을 것으로 판단되며, 추가적으로 거푸집 해체 단계를 생략함으로 공기단축 측면에서 유리할 것으로 판단된다.

  • PDF

Hydration Heat and Crack-Reducing Properties of Cement Mortar Added Fluosilicate Salt Based Hydration Heat Reducer (규불화염계 수화열 저감제가 첨가된 시멘트 모르타르의 수화열 변화 및 균열저감 특성)

  • Kim, Jin-Yong;Lee, Hyo-Song;Rhee, Young-Woo;Kim, Do-Su;Lee, Byoung-Ky;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.198-204
    • /
    • 2005
  • Fluosilicate salts based hydration heat reducer(SWP-HR), used in this study, is composed of fluosilicate salts, soluble silica, aromatic polymer condensate and nitrate salt based inorganic compound with latent heat property. Effects of SWP-HR addition on the hydration heat and anti-crack property of cement mortar were investigated. Adiabatic hydration temperature and drying shrinkage length of SWP-HR added cement mortar had a tendency to decrease compared to those of cement mortar without SWP-HR addition. Also, it was confirmed through crack pattern experiment of plate-form specimen for elucidating crack-reducing characteristic that anti-crack property of SWP-HR added cement mortar was improved.

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production (고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구)

  • Jaung, Jae-Dong;Cho, Hyun-Dae;Park, Seung-Wan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • Recently, the interest and demand for large-scale buildings and skyscrapers have been on the rise, and the performance of concrete is an area of high priority. Securing 'mass concrete and high strength concrete' is very important as a key construction technology. For high strength concrete, the high heat of hydration takes place inside the concrete because of the vitality of hydration in cement due to the large amount of powder, and leads to problems such as an increase of thermal stress due to the temperature difference with the outside, which results in cracks and slump loss. For this reason, measures to solve these problems are needed. This study aims to reduce the hydration heat of high strength concrete to control the hydration heat of mass concrete and high strength concrete, by replacing the type of admixture, The purpose of this study is to control the hydration heat of high strength concrete and mass concrete. Our idea for this purpose is to apply not only the types and contents of admixture but also incorporation mixing water to ice-flake. As a result of the test, the use of blast furnace slag and fly ash as admixture, and the use of ice-flake as mixing water can improve the liquidity of concrete and reduce slump loss. Significantly dropping the maximum temperature will contribute greatly to reducing cracks due to hydration heat in mass concrete and high strength concrete, and improve quality.

Hydration-heat Characteristics of Mortar mixed with Strontium Hydration-heat Reducing Material (스트론튬계 수화열저감재 혼입 모르타르의 수화발열 특성)

  • Kim, Goo-Hwan;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.33-34
    • /
    • 2018
  • As a result of measuring the compressive strength and semi-adiabatic temperature rise of the mixed mortar, it was confirmed that the mortar mixed with the hydration heat reducing material is effective. On the other hand, the compressive strength showed similar strength to that of moderate heat Portland cement until the age 7 days, but after that, the tendency of the strength development to be delayed was confirmed.

  • PDF

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

Properties of Hydration Heat and Autogenous Shrinkage of High-Strength Mass Concrete with Latent Heat Material (잠열재를 사용한 고강도 매스 콘크리트의 수화열 및 자기수축 특성)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.315-316
    • /
    • 2009
  • In this study, latent heat material was used to reduce hydration heating velocity of high-strength mass concrete. And the properties of hydration heat and autogenous shrinkage, and the relationship between hydration heat and autogenous shrinkage of high-strength mass concrete were numerically investigated.

  • PDF