• Title/Summary/Keyword: 수화에너지

Search Result 128, Processing Time 0.032 seconds

Theoretical Study of Hydration of Zeolite NaA (제올라이트 NaA의 수화에 관한 이론적 연구)

  • Kyoung Tai No;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.374-384
    • /
    • 1979
  • Hydration scheme and hydration energy are determined in ${\alpha}$ cage of zeolite NaA. The selectivity between Na(1) and Na(2) is determined from energy calculation. The waters in ${\alpha}$ cage form a distorted dodecahedral cage. The average binding energies of water(1), water(2) and water(3) are -29.847, -25.344 and -15.888 kcal/mole respectively. The positions of oxygens of hydrated waters are in good agreement with the X-ray data. The heat of immersion curve is also obtained. This result is in good agreement with the differential heat of sorption curve obtained from differential thermal analysis. It is concluded that theoretical method provides considerable uses in the determination and understanding of the hydration and interaction energy of zeolites sorbate binding.

  • PDF

Gas hydrate-bearing venting strucutres in the Sea of Okhotsk (오호츠크해의 가스하이드레이트 함유 가스분출구조)

  • Jin, Young-Keun;Chung, Kyoung-Ho;Party, Chaos Scientific
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.501-503
    • /
    • 2007
  • 오호츠크해 사할린 북동 해저사면지역은 세계적인 가스수화물 산출지역으로 알려져있다. 이미 2005년 탐사에서 50 cm 두께의 순수 가스수화물 시료를 해저면에서 채취한 지역이다. 2006년 탐사에서는 다양한 주파수대역의 고해상도 지구불리장비를 사용하여 탐사를 실시하였다. Side-scan Sonal와 3.5 kHz SBP 탐사, 수중음향 탐사를 통해 대규모 하도구조가 가스수화물지역의 북쪽 경계를 형성하고 있음을 밝혔다. 가스수화물의 BSR은 수심에 얕아짐에 따라 계속해서 심도가 감소하여 수심 약 300 m에서 해저면에 다다름. 이는 연구지역에서의 가스수화물 안정대의 상부경계가 약 300 m임을 시사한다 가스수화물 분출구조들은 약 1000m 수심을 경계로 천부에 분포하고, 해저면에는 원형의 가스분출구조들이 특징적으로 나타난다. 반면에 1000 m 수심보다 깊은 지역에서는 mud-dirpir의 상승구조로 판단되는 상승구조들이 해저면에 굴곡지형을 형성하고 있다. 해수중으로 분출하는 가스기둥들은 수심 111.2 m에서 1226.4 m 지점까지 다양한 수심에서 분포하며, 상승높이는 최대 750 m에 이르며, 약 150 m 수심까지 도달한다. 이는 해저에서 분출되는 메탄가스가 해수에 흡수되지 않고 해수면까지 이동하여 대기중으로 발출될 수 있음을 시사한다.

  • PDF

21세기에 산다 - 무한으 신 에너지자원

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.32 no.10 s.365
    • /
    • pp.18-20
    • /
    • 1999
  • 21세기에는 하늘과 땅, 그리고 바다 밑에서 무한의 新에너지자원을 개발하여 에너지 걱정은 안해도 된다. 태양광발전 위성에서 전기를 얻고 해저의 메탄수화물을 개발하고 태양과 별들 속에서 일어나는 핵융합을 재현하면 충분히 공급할 수 있다는 것이다. 또 현재 개발할 수 있는 석유의 매장량은 1조배럴로 세계 소비수준으로 40년 분량이며 메탄수화물, 천연가스, 타르 샌드 등을 개발하면 앞으로 3세기는 충분히 공급할 수 있다는데.

  • PDF

High Temperature Thermodynamics of Aqueous electrolyte Solutions (전해질 수용액의 고온 열역학)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.63-67
    • /
    • 2018
  • Gibbs free energy is a measure of relative stability among substances. Since the nature of the ions in aqueous solution is diverse, their thermodynamic data at extensive experimental conditions is scarce. In this work, the calculation procedure was introduced to obtain the absolute and conventional standard molar enthalpies and entropies of hydration of ions from the standard enthalpies and entropies of formation of hydrated ions. The application of correspondence principle to estimate thermodynamic data at high temperature was explained.

Dispersion Characteristics of Wettable Powder Suspension by Ultrasonication (초음파 처리에 의한 수화제 현탁액의 분산 특성)

  • 송민근;나우정;주은선;강규영;이경열
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.434-439
    • /
    • 2003
  • 20세기 후반부에 이르러 초음파는 과학 및 산업분야 전반에 걸쳐 다각도로 활용 및 응용되고 있다. 본 연구는 초음파를 이용한 분무입경의 미세화 및 균일입경의 분무를 위한 초음파 응용기기의 설계를 위한 선행연구로서 초음파 에너지에 의한 고형성분의 파쇄여부를 측정하였다. 초음파 에너지를 부가한 후, 즉 초음파 처리된 상태에서의 수화제의 물리적인 파쇄특성을 광학현미경과 SEM을 이용하여 관찰하였다. (중략)

  • PDF

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition (과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구)

  • Hoseong, Kang;So Young, Lee;Hyoung-Juhn, Kim;Chang Hyun, Lee;Chi Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.475-485
    • /
    • 2022
  • The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.

Ion Permeability, Dehydration and Relaxation Times of Hydrated Ions Through Membranes (반투막을 통한 수화된 이온의 투과속도 탈수화율 및 완화시간에 관한 연구)

  • Kim Mu Shik;Lee Hai Bang;Kim Sung Wan;Joseph D. Andrade
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.448-452
    • /
    • 1976
  • A simplified statistical mechanical method was developed for the calculation of the dehydration fraction, activation free energy of dehydration, and the relaxation times of hydrated ions. The model used includes the equilibrium constant between hydrated and dehydrated water, a water-ion interaction potential energy term, and a mixing factor for the species present. The agreement between theory and experiment is good. The pressure dependence of ion dehydration is also discussed.

  • PDF

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Characterization of Thermal Properties of Concrte and Temperature Prediction Model (콘크리트재료의 열특성 및 수화열 해석)

  • 양성철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • The thermal behavior of' concrete can be ch;lracterized from a knowledge of concrete ternperatu1.e at early ages, environmental conditions, and cement hydration in the mixture. 'l'o account for thost. interactions, a computer model was developed for prwlicting the temperature pr.ol'ile in hnrdcning c o n c r c t ~ st.r~icture in terms of material and tmvironmcntal factors. The cerncnt hydration cha~.acteristics such as the activating energy, total heat 1ihei.atr.d. anti th\ulcorner degree of' hydration. can represent the internal heat gc,neration. In this study. th(> activating c1ncrgy and the tlcgree of' hydration curve were determined well fmm the rnortn~. compressive strength tests while total amount of heat liberated was determined by tht> isothermal calorimctcr method. The main purpose of' this study is to correlate measured tt>mperaturr distributions in a concrete st1,ucture during thc hardening process with the ~ c s u l t s computed f'ro~n theoretical considrl.ations. Using twodimensional heat transfer model, first. the importance of several parameters will be identified by a parametric analysis. Then, the tcmpcmture distribution of thc cylindrical concrete specimen in the laboratory was mensuwti and compared with that yielded by thc theoretical considel.ations.