• Title/Summary/Keyword: 수행 양

Search Result 4,277, Processing Time 0.033 seconds

Simultaneous Detection of Seven Phosphoproteins in a Single Lysate Sample during Oocyte Maturation Process (난자성숙 과정의 단일 시료에서 일곱 가지 인산화 단백질의 동시 분석 방법)

  • Yoon, Se-Jin;Kim, Yun-Sun;Kim, Kyeoung-Hwa;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2009
  • Objective: Phosphorylation and dephosphorylation of proteins are important in regulating cellular signaling pathways. Bead-based multiplex phosphorylation assay was conducted to detect the phosphorylation of seven proteins to maximize the information obtained from a single lysate of stage-specific mouse oocytes at a time. Methods: Cumulus-oocyte complexes (COCs) were cultured for 2 h, 8 h, and 16 h, respectively to address phosphorylation status of seven target proteins during oocyte maturation process. We analyzed the changes in phosphorylation at germinal vesicle (GV, 0 h), germinal vesicle breakdown (GVBD, 2 h), metaphase I (MI, 8 h), and metaphase II (MII, 16 h in vitro or in vivo) mouse oocytes by using Bio-Plex phosphoprotein assay system. We chose seven target proteins, namely, three mitogen-activated protein kinases (MAPKs), ERK1/2, JNK, and p38 MAPK, and other 4 well known signaling molecules, Akt, GSK-$3{\alpha}/{\beta}$, $I{\kappa}B{\alpha}$, and STAT3 to measure their phosphorylation status. Western blot analysis and kinase inhibitor treatment for ERK1/2, JNK, and Akt during in vitro maturation of oocytes were conducted for the confirmation. Results: Phosphorylation of ERK1/2, JNK, p38 MAPK and STAT3 was increased over 3 folds up to 20 folds, while phosphorylation of the other three signal molecules, Akt, GSK-$3{\alpha}/{\beta}$, and $I{\kapa}B{\alpha}$ was less than 3 folds. All of these results except for Akt were statistically significant (p<0.05). Conclusion: This is the first report on the new and valuable method measuring many phosphoproteins simultaneously in one minute sample such as oocyte lysates. All of the three MAPKs, ERK1/2, JNK, and p38 MAPK are involved in the process of mouse oocyte maturation. In addition, STAT3 might be important regulator of oocyte maturation, while Akt phosphorylation at Serine 473 may not be involved in the regulation of oocyte maturation.

Effect of Potassium and Sulfur Powder on the Growth of Peanut Plant in Sandy Soil of Nak-dong Riverside (낙동강유역(洛東江流域) 사질(砂質)땅콩재배지(栽培地) 가리(加里) 및 유황분말(硫黃粉末) 시용효과(施用效果))

  • Kim, Chang-Bae;Park, Seon-Do;Park, No-Kwuan;Choi, Dae-Ung;Son, Sam-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.161-168
    • /
    • 1987
  • This study was conducted to evaluate the effects of potassium and sulfur power levels on the growth, nutrients' uptake at different growing stage and seed yield of peanut plant and changes of soil chamical properties in a sandy peanut cultivated soil of Nak-dong riverside in 1984. 1. The length of main stem, that of branch NO. and NO. of branches per plant were increased by the increased application of potassium and sulfur powdar. Especially sulfur powder treated plot were shown in positive effect with obtained in main root length, NO. of roots and Wt. of noudles formed per plant, roots' weight of peanut plant was much more than top's Wt. at harvesting stage, and so ratio of dry matter Wt. top/root was low. 2. The noudle's Wt. formed was positively significant recognized with dry matter Wt. of peanut plant at harvesting stage and the treatments of potassium were increased 7-20% compared with potassium non-treated plot and sulfur's treatments were increased 4-13% than that of potassium 15kg/10a treatment which was sulfur's non-treated plot in seed yield. 3. Relationship between all nutrients' uptake at flowering stage and seed yield were positively significant recognized, but $P_2O_5$ uptake and N/S ratio showed negative effect at harvesting stage of peanut plant. 4. By the increase of potassium and sulfur powder application, the soil pH at two different stages were almost not differential and the content of K, $P_2O$ and $SO_4$ in soil and $SO_4/P_2O_5$ ratio were increasing tendency.

  • PDF

Evaluation of Surface Covering Methods for Reducing Soil Loss of Highland Slope in Radish Cultivation (고랭지 경사 밭 무 재배지에서 토양유실경감을 위한 피복방법 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Park, Suk-Hoo;Han, Kyung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.667-673
    • /
    • 2011
  • There is relatively high vulnerability of soil erosion in slope highland agriculture due to a reclamation of mountain as well as low surface covering in early summer season with high rainfall intensity time. The aim of this study was to evaluate various surface covering methods for reducing soil loss in highland radish cultivation in highland. The experiment was conducted in 17% sloped lysimeter ($2.5m{\times}13.4m$) with 8 treatments including covering with cut rye, sod culture of rye, Ligularia fischeri var. spiciformis Nakai, Arachniodes aristata Tindale, Aster koraiensis Nakai, Festuca myuros L. and mulching with black polyethylene film, and runoff water, eroded soil and radish growth were investigated. Surface covering with sod culture and plant residue, especially cut rye treatment, had lower runoff water than non-covering, whereas black polyethylene film mulching had the reverse. The amount of eroded soil was also lowest in cut rye treatment, $0.3Mg\;ha^{-1}$, and increased in the order of rye sod culture, Ligularia fischeri var. spiciformis Nakai, Aster koraiensis Nakai, Festuca myuros L., Arachniodes aristata Tindale, black polyethylene film, and non-covering, $68.2Mg\;ha^{-1}$. The results showed that surface covering with sod culture or plant residue could be effective for reducing runoff water and soil erosion in the radish field, significantly in cut rye treatment. On the other hand, in sod culture of rye, Aster koraiensis Nakai and Ligularia fischeri var. spiciformis Nakai, radish yields were lower than in the non-covering. Unlike this, covering with cut rye, sod culture of Festuca myuros L. had similar radish yield to the non-covering radish yield. In conclusion, covering with cut rye and sod culture of Festuca myuros L. were beneficial for reduction of soil loss without decreasing in radish yield in highland sloped fields.

Compaction Characteristics of Multi-cropping Paddy Soils in South-eastern Part of Korea (우리나라 동남부 다모작 논토양의 경반화 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Ki-Do;Sonn, Yeon-Kyu;Park, Chang-Yeong;Hwang, Jae-Bog;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.688-695
    • /
    • 2011
  • This study was carried out for some survey about soil compaction in the multi-cropping system of paddy field. Investigated sites were 90 farmer's fields in south-eastern part of Korea. The tillage practices season was different according to cropping system of paddy; in spring for mono rice cultivation and in autumn for the multi-cropping field. The average tillage depth in investigated sites was about 25 cm, however, it is different between the farmer's tillage practices and soil characteristics. It is high correlation to tillage deep and minimum resistance of penetration. The reaching soil deep to maximum resistance of penetration was about 27 cm, and average penetration resistance of the deep is 1.8~2.0 MPa for moderately fine-textured soils and more than 3.0 MPa for moderately coarse-textured soils. The difference of penetration resistance between cultivating and compacted layer was in order to sandy loam > clayey loam > clayey, and the difference was lesser in poorly drained soils than somewhat poorly ones. In the rice mono cropping field, the maximum resistance in no-tillage for 15 years was 1.18~1.25 Mpa at 20~25 cm in soil deep, however, the resistance of field with every year tillage practices was 2.03~2.21 Mpa. In the extremely compacted sandy loam textured soils, the penetration resistance at 30 cm in soil depth was drastically reduced by the subsoil from 5.2 Mpa to 3.2 Mpa, and the watermelon root in plastic film house was deep elongated.

Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field (논토양에서 규산질비료 시용이 토양 환경에 미치는 영향)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1016-1022
    • /
    • 2011
  • Application of silicate fertilizers is typically practiced with several year's interval to amend soil quality and improve rice productivity at the paddy field in Korea. Most of silicate fertilizers applied in Korea is slag-originated silicate fertilizer. Some water soluble silicate fertilizers are manufactured and commercially available. The objective of this study was to assess changes of soil chemical properties in paddy field by applying slag-originated silicate fertilizer and water soluble silicate fertilizer. Field experiment was conducted on a silt loam paddy soil, where four levels of each silicate fertilizer were applied in soil at the rate of 0, 1, 2, 4 times of the recommended levels. Application of slag-originated silicate fertilizer increased soil pH, while no significant pH increase occurred with the treatment of water soluble silicate fertilizers. Soil pH increased 0.4~0.5 with the 1 time of recommended level of slag-originated silicate fertilizer. Available $SiO_2$ contents also significantly increased with the treatment of slag-originated silicate fertilizer at 15 and 35 days after treatment, while decreased after 60 days after treatment possibly due to rice uptake. Exchangeable Ca, Mg and available phosphate contents in soil increased with application of slag-originated silicate fertilizer, while a little increases for them were shown with the application of soluble silicate fertilizer. $SiO_2$/N ratios in rice straw for 1 time of recommended level of slag-originated silicate fertilizer was 11.5, while that of control was 8.4, which was much lower value. Throughout this study, soil application of slag-originated silicate fertilizer enhanced soil chemical properties, while water soluble silicate fertilizer application in soil needs further study resulting in a little effects on soil property.

Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost (경사도와 축분 부산물비료 시용에 따른 고랭지 밭의 양분 유실량)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • Soil fertility of alpine soils in Gangwon-Do has been deteriorating because of heavy input of chemical fertilizers for intensive crop production. To reduce application of chemical fertilizers, use of livestock manure compost in alpine soils increases consistently. Soil loss and runoff due to heavy rainfall in alpine area cause nutrient loss from soil, and subsequently pollute stream water. Therefore, the objective of this study was to assess nutrient efficiency and loss in Chinese cabbage cultivated soil with different livestock manure composts in several slopes. As control, chemical fertilizer was applied at the rate of $250-78-168kg\;ha^{-1}$ for $N-P_2O_5-K_2O$. Each pig-and chicken manure compost was applied at the rate of $10MT\;ha^{-1}$. Chemical fertilizer + chicken manure compost was applied as same rate. Four treatments was practiced in 5, 20, and 35% filed slopes, respectively. We monitored the amounts of soil loss and runoff water after rainfalls, and we also analyzed the contents of nutrients in soil and runoff water through lysimeter installed in alpine agricultural institute in Gangwon-Do. T-N loss due to soil loss was much greater with increasing filed slops rather than different fertilizer treatments. T-N loss has positive relationship with field slopes, which showing soil loss (MT/ha) = 1.66 slopes (%) - 3.5 ($r^2$ = 0.99). Available phosphate and exchangeable cations showed similar tendency with increasing slopes. T-N and T-P losses caused by runoff water were highest in chemical fertilizer (NPK) + chicken manure compost treated plot, while lowest in chemical fertilizer treatment. T-N contents (2.13, 1.95%) in chinese cabbage treated either pig and chicken manure composts compared to that (2.65%) of chemical fertilizer were significantly less. This could be resulted from much greater T-N loss in soil treated with pig and chicken manure composts.

Nutrient Balance and Vegetable Crop Production as Affected by Different Sources of Organic Fertilizers (유기자원에 따른 양분수지 및 작물생산)

  • Agus, Fahmuddin;Setyorini, Diah;Hartatik, Wiwik;Lee, Sang-Min;Sung, Jwa-Kyung;Shin, Jae-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Understanding the net nutrient balance in a farming system is crucial in assessing the system's sustainability. We quantified N, P and K balances under vegetable organic farming in a Eutric Haplud and in West Java, Indonesia in five planting seasons from 2005 to 2007. The ten treatments and three replications, arranged in a completely randomized block design, included single or combined sources of organic fertilizers: barnyard manure, compos ts or green manures. The organic matter rates were adjusted every planting season depending on the previous crop responses. The result sshowed that the application of ${\geq}20$ t $ha^{-1}$ barnyard manure per crop resulted in positive balances of N, P, and K, except in the second crops of 2006 where potassium balance were -25 to -11 kg $ha^{-1}$ under the treatments involving cattle barnyard manure, because of low K content of these treatments and high K uptake by Chinese cabbage. Application of 20 to 25 t $ha^{-1}$ of plant residue or 5 t $ha^{-1}$ of Tithonia compost also resulted in a negative K balance. Soil available P increased significantly under ${\geq}25$ t $ha^{-1}$ barnyard manure and that under chicken manure had the highest available P. Accordingly, chicken barnyard manure gave the highest crop yield because of relatively higher N, P, and K contents. Plant residues gave the lowest yield due to the lowest nutrient content among all sources. Reducing the use of barnyard manure to 12.5 t $ha^{-1}$ and substituting it with Tithonia compost, Tithonia green manure or vegetable plant residue compost gave insignificantly different yield compared to the application of 25 t $ha^{-1}$ barnyard manure singly. In the long run, application of 25 t ha-1 cattle, goat, and horse manure or about 20 t $ha^{-1}$ chicken manure is recommendable for sustaining the fertility of this Andisol for vegetable production.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Soybean (Glycine max L.) Production System (콩의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.898-903
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle Inventory) database of soybean production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.10E+00 kg $kg^{-1}$ soybean and it of mineral fertilizer was 4.57E-01 kg $kg^{-1}$ soybean for soybean cultivation. It was the highest value among input for soybean production. And direct field emission was 1.48E-01 kg $kg^{-1}$ soybean during soybean cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 3.36E+00 kg $CO_2$-eq $kg^{-1}$ soybean. Especially $CO_2$ for 71% of the GHG emission. Also of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (92%) and soybean cultivation (7%) for soybean production system. $N_2O$ was emitted from soybean cropping for 67% of the GHG emission. In $CO_2$-eq. value, $CO_2$ and $N_2O$ were 2.36E+00 kg $CO_2$-eq. $kg^{-1}$ soybean and 3.50E-01 kg $CO_2$-eq. $kg^{-1}$ soybean, respectively. With LCIA (Life Cycle Impact Assessment) for soybean production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP was 3.36E+00 kg $CO_2$-eq $kg^{-1}$.

Determination of Optimum Rate and Interval of Silicate Fertilizer Application for Rice Cultivation in Korea (벼에 대한 규산질비료의 시용량 및 시용주기 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Jung, Beung-Gan;Park, Woo-Kyun;Lee, Ki-Sang;Kwak, Han-Kang;Yoon, Jung-Hui;Lee, Choon-Soo;Yeon, Byeong-Yeol;Kim, Pil-Joo;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.354-363
    • /
    • 2007
  • In order to investigate the optimum rate and interval of silicate fertilizer application for rice cultivation, Chucheong byeo variety, one of commonly cultivated rice cultivar in Korea was planted on two different wetland rice soils located on Hwaseong-si from 2002 to 2005; Jisan series(a member of the fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts), known as "Productive Paddy Soil", without any conspicuous limiting factor, and Seokcheon series (a member of the coarse loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquetps), known as "Sandy Paddy Soil", sandiness being major limiting factor. There were three rate treatments of silicate fertilizer application; the amount of silicate fertilizers needed to adjust the available soil silicate contents to 130, 200, and $270mg\;kg^{-1}$ was applied, in the first year only. There was an additional plot; applying the amount of silicate fertilizer needed to adjust soil available silicate to 130 ppm every year, which would serve as the base for the evaluation of residual effects of silicate fertilizers in the plots where different rates of silicate fertilizer were applied. From the yield data in first year, it was found that optimum available silica in the soil are $154mg\;kg^{-1$ and $160mg\;kg^{-1}$, in Jisan and Seogcheon soils, respectably. The duration of residual effects of silicate fertilizer was different depending upon the amount of applied silicate fertilizers and the soils. The higher the application rate, the residual effect lasted longer, and the residual effect was lasted longer in Jisan(clay loam) soil than in Seogcheon(sandy loam) soil. During four years, sum of the rate of contribution to increase available soil silica of applied silicate fertilizer in different soils ranged 18.6% and 24.1% in Jisan soil and Seogcheon soil, respectively. This may suggest that much portion of applied silicate would be either lost from the soil or remain in the soil as insoluble form. This deserves further study.