• Title/Summary/Keyword: 수행도 예측

Search Result 8,550, Processing Time 0.038 seconds

Short-Term Electrical Load Forecasting using Structure Identification of Neuro-Fuzzy Models (뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측 시스템)

  • Park, Young-Jin;Shim, Hyun-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.102-106
    • /
    • 2000
  • 본 논문은 뉴로-퍼지 모델의 구조학습을 이용하여 한 시간 앞의 전력 수요를 예측하는 체계적인 방법을 제안한다. 제안된 예측시스템은 시간 단위로 뉴로-퍼지 모델을 재학습하기 위해서 필요한 초기 구조를 요일 유형과 시간 별로 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점의 요일 유형에 따라 선택된 초기 구조를 이용하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 모의 실험을 수행한다. 실험결과 제안된 방법은 기존의 다층 퍼셉트론을 이용한 방법과 비교하여 예측의 정확도 측면과 신뢰도 측면에서 모두 향상된 결과를 얻는다.

  • PDF

Case Study on Fault Prediction of Automated System (자동화 시스템의 고장예측 사례 연구)

  • Gang, Gil-Sun;Lee, Seung-Yeon;Im, Yu-Cheol;Lee, Jong-Hyo;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.283-286
    • /
    • 2003
  • 본 연구는 기존의 고장진단 기법들을 토대로 주어진 자동화 시스템에 실제 적용이 가능한 고장예측 알고리즘을 제시한다. 고장예측은 시스템이 운용되는 도중에 제한된 정보와 컴퓨터 자원을 이용하여 수행되어야 하므로 실시간 적용을 위하여 2단계로 구분하여 수행된다. 첫 번째는 실시간 고장예측 단계로서 시스템 운용 중에 시스템의 고장 징후를 탐지하는 역할을 하며, 두 번째는 오프라인 고장예측 단계로서 실시간으로 고장 징후가 탐지되면 시스템의 작동을 멈춘 후 고장의 징후를 분류하고 식별하는 역할을 수행한다 원활한 고장예측 알고리즘을 도출하기 위해 자동화 시스템의 이산사건 모델과 연속시간 모델을 수립하였으며, 이들을 통합한 공정모델에 대하여 하이브리드 시뮬레이션 환경을 구축하였다. 제안된 기법은 자동화 시스템의 공정모델에 기구부, 모터부에 대한 고장모델을 부가하여 컴퓨터 시뮬레이션을 통하여 타당성을 검증하였다.

  • PDF

Inter-Intra Motion Estimation in Wavelet based Codec (웨이블릿 코덱에서의 Inter-Intra 움직임 예측 기법)

  • 이주경;김충길;강정구;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.187-189
    • /
    • 2003
  • 웨이블릿 변환에 기반한 동영상 코덱에서의 움직임 예측 기법은 OCT 기반 코덱과 유사하게 이전 프레임과의 움직임 예측을 통하여 수행된다. 그러나, 현재 프레임이 이전 프레임을 참조하므로 네트워크상의 전송시 이전 프레임에 발생한 오류가 전달되는 오류 전파의 문제도 발생하게 된다. 본 논문에서는 웨이블릿 변환된 프레임의 특성을 이용하여 최상위 레벨의 LL 부대역만 이전 프레임과의 움직임 예측을 수행하고, 나머지 부대역에 대하여 프레임 내의 상위레벨의 부대역이 하위 부대역을 창조하여 예측 및 보상을 수행하여 오류전파의 가능성을 최소화하는 Inter-Intra ME 동영상 코덱을 제안한다 제안된 움직임 예측을 사용하여 MAD(Mean-Absolute Differences)를 측정한 결과, 프레임간 변화가 심한 경우에는 제안된 기법과 이전 프레임의 부대역을 참조한 기법 사이의 압축율은 유사하게 나타났으며, 변화가 적은 경우에는 이전 프레임을 참조하는 것의 압축율이 높게 나타났다. 그러나, 네트워크 전송시 발생하는 오류전파에는 제안된 기법의 성능이 우수한 것으로 나타났다.

  • PDF

Sequential Bayesian Evolutionary Computations for Time Series Prediction (순차적 베이지안 진화 연산을 이용한 시계열 예측)

  • 조동연;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.311-313
    • /
    • 2000
  • 본 논문에서는 시간이 흐름에 따라 관측되는 시계열 데이터에 대한 예측을 위한 순차적 베이지안 진화 연산기법을 제안한다. 이 방법에서는 이전 세대의 모델을 바탕으로 예측을 수행하고 새로운 데이터가 주어지면 현재의 예측 모델을 평가하여 더 좋은 모델을 생성하도록 한다. 제안된 방법을 시계열 데이터에 적용한 결과 기조의 방법보다 데이터에 적합한 모델을 학습하고 성공적인 예측을 수행함을 확인하였다.

  • PDF

Design and Implementation of an Oil Prices Forecasting System (유가예측 시스템의 설계 및 구현)

  • 김은경;이원형;배진희;김상환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.227-234
    • /
    • 2000
  • 지금까지 수행된 대부분의 유가예측은 주고 계량 데이터를 기반으로 하는 여러 가지 계량 모델을 구성하여 수행되었으며, 그 결과 산유국 동향과 같은 국제 유가시장의 불확실성을 제대로 반영하지 못했다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위하여 계량경제학적인 접근방법과 전문가시스템을 통합한 유가예측 시스템을 설계 및 구현하였다. 즉, 계량 데이터를 기초로 유가예측 모델을 구성하고, 산유국동향과 같은 비계량적인 요인이 유가에 미치는 영향에 대한 실무자의 경험적인 지식은 지식베이스로 구축함으로써, 유가예측과 관련된 다양한 요인들을 폭넓게 고려할 수 있는 통합된 시스템을 개발하였다. 유가예측 모델로는 대표 유종의 유가 및 수급 전망을 위한 동적 선형연립 모델과 유종간 유가의 균형차액을 예측하기 위한 Fully Modified 공적분 회귀분석 모델을 구성하였으며, 유가예측 모델에서 반영하기 어려운 산유국 동향이나 OPEC정책, 선물시장 동향 등은 실무자의 경험적인 지식을 바탕으로 시스템 예측변수로 설정하여 유가예측에 반영할 수 있도록 지식베이스를 구축하였다. 또한, 본 시스템에서는 유가예측 이외에 석유 수급을 전망하고, 유가 및 수급과 관련된 다양한 정보를 제공하고 관리하는 기능을 제공하고 있다.

  • PDF

Seasonal precipitation prediction using ICON model (ICON모델을 이용한 계절 강수 예측)

  • Kim, Ga Eun;Oh, Jai Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.360-360
    • /
    • 2017
  • 이상기상현상의 발생횟수가 지속적으로 증가함에 따라 기상 예측은 국가 재난 관리에 중요한 요소로써 부상하고 있다. 계절예측 또한 재난관리의 한 부분으로, 농업, 에너지, 수자원 그리고 공공보건 등 다양한 분야에서 잠재적 위험을 파악하는데 도움이 되는 보조 자료로 활용이 가능하다. 본 연구에서는 ICON(ICOsahedral-Nonhydrostatic) 모델을 이용하여 2015년 여름철(JJA) 강수를 예측하였다. 2015년은 장마기간을 포함한 여름철 동안 평년대비 약 절반수준(54%)에 그치는 비가 내렸으며, 태풍으로 인한 강수량도 적어 연 강수량이 평년대비 72%로 역대 최저 3위를 기록하였다. 지역별로 보면 제주도와 남해안 지방을 제외한 대부분 지방에서 강수량이 적게 나타났으며, 수도권을 중심으로는 60% 미만의 강수량을 보였다. ICON 모델은 독일 기상청(DWD)과 막스플랑크 연구소(MPI-M)에서 공동 개발하여 현업 운영중인 전 지구 모델로 비정역학 코어를 사용한다. 전 지구를 정 20면체의 삼각형으로 격자화 시켜 모든 격자의 크기가 동일하고, 극점은 1개의 꼭짓점으로 구성되어 CFL(Courant-Friderich-Lewy) 문제가 해소될 수 있다. 또한 hybrid의 병렬구조를 사용하여 전산사용 효율성을 극대화 하는 특징이 있다. 강수의 계절 예측 수행 과정은 다음과 같다. 우선, 계절예측 자료 분석 시 활용할 ICON모델의 기후값을 생산하기 위해 30년(1980년~2009년)간의 AMIP기반 규준실험을 수행한다. 다음으로, SST와 Sea ice의 평년대비 현재 변동량을 계산하고, 이 자료는 모델 적분을 수행할 때 경계 자료로서 활용하게 된다. 계절 예측은 시간 지연기법(Time-lagged method)를 이용한 앙상블예측으로 수행하며, 예측하고자 하는 계절이 시작하기 약 1개원 이전부터 1일 간격으로 전 지구 모델의 초기자료를 다르게 선택하여 총 10개의 앙상블 멤버를 구성한다. 모델의 해상도는 수평 40km, 수직 90개 층으로 구성하였으며, 적분이 완료되면 AMIP기반 실험을 통해 모의된 기후값을 토대로 예측된 계절전망 자료의 변동성을 분석한다.

  • PDF

Drought Frequency Analysis using Monthly Rainfall for Low Flow Management (갈수관리 활용을 위한 월강수량 가뭄빈도분석)

  • Moon, Jang-Won;Kim, Jeong-Yup;Cho, Hyo-Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.415-415
    • /
    • 2018
  • 갈수관리를 효과적으로 수행하기 위해서는 하천유량을 예측할 수 있는 방안을 마련하는 것이 중요하다. 하천유량 예측을 위해서는 강수량에 대한 예측 값을 활용하는 방안이 가장 적합하다고 할 수 있으나 강수량 예측에 대한 불확실성은 하천유량 예측의 정확도 확보에 있어 한계로 작용하고 있다. 강수량 예측에 대한 불확실성 극복을 위해서는 다양한 강수 시나리오를 설정하여 활용하는 방안을 검토할 수 있으며, 유량 예측을 하고자 하는 유역에 대해 과거 발생했던 강수량이 반복된다는 가정 하에 유량 예측을 제한적으로 수행하고 있는 상황이다. 이와 함께 강수 시나리오의 다양성 확보 차원에서 하천유량을 예측하고자 하는 유역에 대해 가뭄빈도 강수량을 사전에 산정한 후 유량 예측 과정에 활용하는 방안도 고려해볼 수 있는 방안이다. 이에 본 연구에서는 2016년 수립된 수자원장기종합계획(국토교통부, 2016)에서 제시된 중 권역별 일 강수량 자료를 이용하여 중권역별로 월 강수량을 산정한 후 월별 가뭄빈도분석을 수행하였다. 1966~2015년까지의 기간에 대한 월 강수량 자료를 이용하여 월별로 가뭄빈도분석을 수행하였으며, 빈도분석 방법으로는 확률가중모멘트법을 이용하여 적정 분포형 결정 및 갈수빈도별 강수량을 산정하여 제시하였다. 이때 빈도 강수량의 재현기간은 총 7가지 빈도(2년, 5년, 10년, 20년, 50년, 80년, 100년)를 고려하였다. 산정된 빈도 강수량을 이용하여 월 유출모형에 적용함으로써 월 유출 전망 자료 생산이 가능하며, 금강수계의 용담댐유역에 시범 적용하여 그 결과를 검토하였다. 검토 결과, 중권역별로 산정된 월별 가뭄빈도 강수량을 활용한 하천유량 예측 방법은 갈수예보에 있어 유용한 정보를 제공할 수 있을 것으로 판단된다.

  • PDF

Prediction of water level in sewer pipes using machine learning (기계학습을 활용한 하수관로 수위 예측)

  • Heesung Lim;Hyunuk An;Hyojin Lee;Inhyeok Song
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.93-93
    • /
    • 2023
  • 최근 범지구적인 기후변화로 인해 도시유역의 홍수 발생 빈도가 빈번하게 발생하고 있다. 이로 인해 불투수성이 큰 도시지역의 침수 등의 자연재해 증가로 인명 및 재산피해가 발생하고 있다. 이에 따라 하수도의 제 기능을 수행하고 있다면 문제가 없지만 이상기후로 인한 기록적인 폭우에 의해 침수가 발생하고 있다. 홍수 및 집중호우와 같은 극치사상의 발생빈도가 증가됨에 따라 강우 사상의 변동에 따른 하수관로의 수위를 예측하고 침수에 대해 대처하기 위해 과거 수위에 따른 수위 예측은 중요할 것으로 판단된다. 본 연구에서는 수위 예측 연구에 많이 활용되고 있는 시계열 학습에 탁월한 LSTM 알고리즘을 활용한 하수관로 수위 예측을 진행하였다. 데이터의 학습과 검증을 수행하기 위해 실제 하수관로 수위 데이터를 수집하여 연구를 수행하였으며, 대상자료는 서울특별시 강동구에 위치한 하수관로 수위 자료를 활용하였다. 하수관로 수위 예측에는 딥러닝 알고리즘 RNN-LSTM 알고리즘을 활용하였으며, RNN-LSTM 알고리즘은 하천의 수위 예측에 우수한 성능을 보여준 바 있다. 1분 뒤 하수관로 수위 예측보다 5분, 10분 뒤 또는 1시간 3시간 등 다양한 분석을 실시하였다. 데이터 분석을 위해 하수관로 수위값 변동이 심한 1주일을 선정하여 분석을 실시하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였으며, 하수관로 수위 고유번호 25-0001을 대상으로 예측을 하였다. 학습에는 2012년 ~ 2018년의 하수관로 수위 자료를 활용하였으며, 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

  • PDF

Analysis of AI-based techniques for predicting water level according to rainfall (강우에 따른 수위 예측을 위한 AI 기반 기법 분석)

  • Kim, Jin Hyuck;Kim, Chung-Soo;Kim, Cho-Rong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.294-294
    • /
    • 2021
  • 강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.

  • PDF

An Improved Dynamic Branch Predictor by Selective Access of a Specific Element in 4-Way Cache (4-Way 캐쉬의 선택된 Element를 이용한 향상된 동적 분기 예측기 구현)

  • Hwang, In-Sung;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1094-1101
    • /
    • 2013
  • This paper proposes an improved branch predictor that reduces the number execution cycles of applications by selectively accessing a specific element in 4-way associative cache. When a branch instruction is fetched, the proposed branch predictor acquires a branch target address from the selected element in the cache by referring to MRU buffer. Branch prediction rate and application execution speed are considerably improved by increasing the number of BTAC entries in restricted power condition, when compared with that of previous branch predictor which accesses all elements. The effectiveness of the proposed dynamic branch predictor is verified by executing benchmark applications on the core simulator. Experimental results show that number of execution cycles decreases by an average of 10.1%, while power consumption increases an average of 7.4%, when compared to that of a core without a dynamic branch predictor. Execution cycles are reduced by 4.1% in comparison with a core which employs previous dynamic branch predictor.