• Title/Summary/Keyword: 수학지식

Search Result 845, Processing Time 0.022 seconds

Mathematics as Engaged Practice: Professional Mathematicians' Conceptions of Mathematics (전문수학자의 수학에 대한 신념)

  • Ju, Mi-Kyung
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.4
    • /
    • pp.477-491
    • /
    • 2010
  • This research took an interpretive approach to investigate professional mathematicians' conception of mathematics, particularly focusing on their beliefs about the nature of mathematics as a discipline, and the relation between the discipline and themselves as knowers. The analysis shows that the professional mathematicians consider mathematics as human practice. For mathematicians, mathematics as a product is considered as a crystalization of practice that emerges in the dialogical relation between the discipline and its practitioners. This dialogical nature of mathematics suggests that professional mathematicians consider mathematics not as isolated fixed knowledge but as something they are playfully engaged with. The results of this research extend our understanding of what mathematics is and provide an alternative perspective on mathematics to make the learning of mathematics more accessible by dismantling the myth of the rationalist pure objectivity in mathematics.

  • PDF

A Meaning of Construction of Mathematical Knowledge in Dewey Epistemology (Dewey에게 있어서 수학적 지식의 구성의 의미)

  • 강흥규
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.129-142
    • /
    • 2004
  • These days, constructivism has become a central theory in mathematics education. A essential concept in constructivism is 'construction' and the meaning of construction of mathematical knowledge is a core issue in mathematics educational field. In the basis of Dewey's epistemology, this article is trying to explicate the meaning of construction of mathematical knowledge. Dewey, Kant and Piaget coincide in construction of knowledge from the viewpoint of the interaction between mind and environment. However, unlike Dewey's concept, Kant and Piaget are still in the line of traditional realistic epistemology. Dewey's concept of construction logically implies teaching-learn learning principles. This can be named as a principle of genetic construction and a principle of progressive consciousness.

  • PDF

발생론적 인식론을 적용한 수학교실 - C. Kamii의 '두 자리 수 더하기 두 자리 수' 수업을 중심으로 -

  • Kim, Jin-Ho
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.371-382
    • /
    • 2004
  • Kamii는 피아제의 발생론적 인식론이란 이론을 모태로 수학을 지도해야 학습자가 수학을 이해를 바탕으로 학습할 수 있다는 믿음을 지니고 있다. 본고에서는 Kamii가 이런 신념을 갖고 실시한 수업을 녹화한 비디오 자료에 나타나는 특징을 분석하였다. 첫 번째 특징은, 교사가 가르쳐야 할 지식을 직접적으로 지도하지 않는 대신에 학습자가 스스로 지식을 구성할 수 있도록 매개자의 역할을 한다는 점이다. 두번째, 기저지식으로서 학습자의 비형식적 지식을 학습자가 적극적으로 활용할 수 있도록 허용하는 분위기이다. 세 번째, 두 번째와 관련되어서 학습자의 사고과정은 성인이나 학문적 체계에서 운용되고 있는 사고 흐름과는 다르다는 것을 인정해 준다. 네 번째, 교사의 역할이 가르쳐야 할 지식을 가르치는데(전수하는데) 있는 것이 아니라 학습자들이 생성해 낸 여물지 않은 아이디어들을 익힐 수 있도록 환경을 조성하는데 있다. 다섯 번째, 학습자마다 기저지식이 다르기 때문에 동일한 학습주제라 할지라도 이해의 폭과 깊이가 다르다. 따라서, 전체학급을 대상으로 하는 수업 중이라 할지라도 개별적 학습을 염두에 두어야 한다. 학생들의 수학적 이해력이 저하된다는 염려의 목소리가 높아지고 있다. 이는 학생들이 이해를 바탕으로 한 수업을 받아 보지 못하기 때문이며, 이런 원인은 아마도 교사 자신이 이해를 바탕으로 한 수업 경험이 간접적으로든 직접적으로든 없기 때문일 것이다. Kamii가 실시한 수업이 학생 스스로 수학을 학습할 수 있다는 구성주의 원리를 적용한 성공적인 사례이며, 이와 같은 방향으로의 교수법의 변화가 있기를 기대한다.

  • PDF

College Students' Conceptions of Mathematics: A Comparison of Korean Students and American Students (대학생의 수학 개념: 한국 학생과 미국 학생의 비교)

  • JKang, Ok Ki
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • 이 논문은 수학적 개념의 뜻과 과 중요성을 살펴본 다음, 연구자가 소속되어 있는 한국의 대학생과 연구자가 연구년 동안 강의한 바 있는 미국의 대학생이 갖고 있는 수학적 개념의 수준에 대하여 조사하여 보고, 그 차이점을 비교하여 수학교육의 개선을 위한 시사점을 찾아보고자 하였다. 본 연구는 수학적 개념을 수학적 지식의 구성, 수학적 지식의 구조, 수학적 지식의 현상, 수학을 행하기, 수학적 아이디어의 가치 인식, 구성으로서의 학습, 유용한 노력으로서의 수학으로 분류하고 각 개념에 대한 양국 학생들의 인식 정도를 설문조사 방식으로 조사하였다. 본 연구에서 한국 학생들은 수학적 개념에 대한 7개의 영역 중에서 '수학적 지시의 현상', '수학을 행하기'를 제외한 5개의 영역에서 더 높은 수준을 보였다. 앞으로 한국의 수학교육은 수학을 실제로 행하는 활동을 더욱 강조하여야 할 것이다.

  • PDF

The Muslim Mathematics (Muslim의 수학)

  • Al-Daffa, Ali Abdullah
    • Journal for History of Mathematics
    • /
    • v.1 no.1
    • /
    • pp.33-67
    • /
    • 1984
  • Muslim의 수학은 천문학과 마찬가지로 종교적 필요성이 있었다. 기하학적 지식은 매일 예배하는 Mecca의 방향을 정하기 위한 것이었다면, 산술과 대수는 주로 제일을 계산하기 위해 필요했다. Muslim의 수학은 결국 종교적 욕구를 충족시키는데 끝없을 뿐 과학 일반에의 응용은 없었으나, 전 인류에게 그 지식을 보급시킴으로서 수학사상 중요한 위치를 차지한다. Muslim의 문화가 일어나는 시대는 10세기로 생각할 수 있으며, 특히 이 시기에 학술연구가 시작됐다. 11세기는 Muslim의 황금시기이며 실험과 이론의 두분야에서 눈부신 발달이 있었다. 12세기에는 퇴락의 과정을 밝으면서도 그 문화적 유산은 서구세계에 넘겼다. 본 눈문에서는 산술, 대수, 삼각법을 중심으로 이들 학문의 형성과정과 지식의 전달과정을 살핀다.

  • PDF

Study on the Effectiveness of Team Project to Improve TPACK of Preservice Mathematics Teachers (예비 수학교사의 테크놀로지 내용교수지식(TPACK) 신장을 위한 팀 프로젝트 효과 연구)

  • Rim, Hae-Mee
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.545-564
    • /
    • 2009
  • TPACK (Technological Pedagogical Content Knowledge) adds the technological knowledge to PCK (Shulman 1986), completing the combination of three kinds of knowledge, i.e. teacher's content knowledge (CK), pedagogical knowledge (PK), and technological knowledge (TK). In this study, I seek to design methodological ways to improve TPACK for preservice mathematics teachers by developing and analyzing team project-based classes with technology in a class of the first semester 2009 in a teacher's college in Seoul, South Korea. The goal of the team project is to design classes to teach mathematics with technology by selecting technology tools suitable for specific mathematical concepts or mathematics sections. In the early stage of the class in the college, the confidence levels among the preservice mathematics teachers were relatively low but increased in the final stage their mathematics teaching efficacy up to from 3.88 to 4.50. Also, the pre service mathematics teachers answered the team project was helpful or very helpful in developing TPACK; this result proves that lectures with technology which based on team project are excellent tools for the teacher to design classes with technology confidently. Considering the teacher's TPACK is one of the abilities to achieve the goals required in the information technology era, the preservice mathematics teachers are asked to plan and develop the lectures with technology, rather than just taught to know how to use technology tools or adapt to specific cases. Finally, we see that national-wide discussion and research are necessary to prepare customized standards and implementable plans for TPACK in South Korea.

  • PDF

Effect of Mathematics Instruction Based on Constructivism on Learners' Knowledge Generation Level and Reasoning Ability - Focusing on 4th Grade Fraction (구성주의를 반영한 수학 수업이 학생의 지식 생성 수준 및 추론능력에 미치는 영향 - 초등학교 4학년 분수를 중심으로 -)

  • Lee, Eungsuk;Kim, Jinho
    • Education of Primary School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.79-112
    • /
    • 2016
  • The purpose of this research is to find the effects of learner-centered instruction based on constructivism (LCIC) on their knowledge generation level and reasoning ability. To look for them, after fraction units are re-planed for implementing LCIC, instructions using it provide students in a class. From the data, some conclusions can be drawn as follows: LCIC has more positive influence of students on recall ability, generation ability, and reasoning ability than tractional instruction method. With the data it can be said that the interaction exists between learners' reasoning ability and generation level.

A participatory action research on the developing and applying mathematical situation based problem solving instruction model (상황중심의 문제해결모형을 적용한 수학 수업의 실행연구)

  • Kim, Nam-Gyun;Park, Young-Eun
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.429-459
    • /
    • 2009
  • The purpose of this study was to help the students deepen their mathematical understanding and practitioner improve her mathematics lessons. The teacher-researcher developed mathematical situation based problem solving instruction model which was modified from PBL(Problem Based Learning instruction model). Three lessons were performed in the cycle of reflection, plan, and action. As a result of performance, reflective knowledges were noted as followed points; students' mathematical understanding, mathematical situation based problem solving instruction model, improvement of mathematics teachers.

  • PDF

초등수학교육에 있어서의 추론 방법

  • Nam, Seung-In
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.45-63
    • /
    • 1999
  • 학교 수학의 궁극적인 목표는 “수학적 능력과 태도를 육성하는데 있다.” 이러한 목표를 달성하기 위해서는 수학의 기본적인 지식과 기능을 습득하는 일과 수학적으로 사고하는 능력을 기르는 일이 뒷받침되어야 할 것이다. 수학적 사고는 학교수학에서 지도되는 내용 그 자체에 관련된 것이 아니라 이들 수학을 수학내용을 이해하고 지식으로 획득하는 과정에서 행하여지는 수학적인 활동과 관련이 있다고 하겠다. 본고에서는 수학적인 활동의 방법적인 측면에서 귀납 추론, 연역 추론, 유비 추론에 대해서 개괄적으로 알아보고, 귀납 추론의 필요성 및 특성과 구체적인 적용 사례에 대해서 알아보고자 한다.

  • PDF

Educational Application of Chosun Mathematics in Education of Prospective Elementary School Teachers (예비 교사교육에서 수학사의 교육적 적용 : 조선산학 프로그램을 중심으로)

  • Choi, Eun Ah
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-202
    • /
    • 2015
  • In this research, I explored how to apply the history of mathematics in teacher education and investigated the applicability of Chosun Sanhak (mathematics of Chosun Dynasty) as the program that enriched the mathematical knowledge for teaching of prospective elementary school teachers. This program included not only mathematical knowledge but also socio-cultural knowledge and connection knowledge. Prospective teachers participated in various mathematical activities such as explaining, reasoning and problem solving in this program. The effects of this program are as follows. Prospective teachers learned the subject matter knowledge(SMK) which was helpful in teaching basic concepts and skills of elementary mathematics. Next, this program produced the pedagogical content knowledge(PCK) to prospective teachers by giving ideas how to teach.