Annual Conference on Human and Language Technology
/
2018.10a
/
pp.310-315
/
2018
본 논문에서는 한국어 수학 문장제 문제 자동 풀이를 위한 방법을 소개한다. 수학 문장제 문제란 수학적 관계가 언어와 숫자로 주어질 때, 문제에서 요구하는 정보를 도출하는 수학 문제로, 언어 의미 분석과 수학적 관계 추출이 요구된다. 본 논문에서는 이원 일차 연립 방정식을 포함한 514 문제의 영어 데이터셋을 번역해 한국어 문제를 확보하였다. 또한 한국어의 수학적 관계 표현과 언어 유형적 특성을 고려한 자질 추출을 제안하고, 템플릿 기반 Log-linear 모델이 정답 방정식을 분류하도록 학습하였다. 5겹 교차 검증을 실시한 결과, 영어 문제를 풀이한 선행 연구의 정답률 79.7% 대비 1%p 낮은 78.6%의 정답률을 보였다.
Proceedings of the Korea Society of Elementary Mathematics Education
/
2010.08a
/
pp.143-156
/
2010
사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.
수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 이렇게 추상된 것들을 모아 분류를 하고 그 다음에 이름을 붙이는 것이 바로 개념이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 이 개념들은 여러 가지 모양으로 결합하여 스키마라고 부르는 개념 구조를 형성하게 되는데, 이 스키마는 수학적 사고를 하는데 매우 중요한 역할을 하여 수학을 개념적으로 이해하는데 도움을 주며, 새로운 지식을 얻는데 필요한 필수적인 도구가 된다. 본 논문에서는 연속적인 수열의 합의 공식에 대하여 학생들이 Skemp가 말한 '관계적 이해'를 할 수 있도록 스키마를 이용하여 문제를 해결할 수 있는 모델과 원주의 스키마를 이용한 생활 속의 문제를 제시하여 학생들이 공식을 암기하기보다는 수학의 구조를 파악하고 연계성을 이해함으로서 능동적인 구성활동을 유발하여 수학에 대한 흥미를 느낄 수 있도록 도움을 주고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.123-125
/
2002
여러 사람에게서 생체신호를 측정하여 특징을 추출하는 경우 피실험자마다 다른 신체적 또는 생리학적 특징에 의해 같은 클래스로 분류하고 싶어도 다른 클래스로 잘못 분류되는 경우가 발생한다. 이와 같이 N 명의 사람에게서 얻은 생체신호로 M 개의 클래스를 분류하도록 훈련하여 새로운 사람의 생체신호를 M 개의 클래스로 분류하고자 할 때 발생하는 문제를 해결하기 위한 방법으로 피실험자 독립적인 클러스터링 방법을 제안하고자 한다. 이를 위한 수학적 기반으로 동치관계들의 교집합과 합집합에 근거한 새로운 연산자를 정의하고 이를 이용하여 최대 공통 클러스터(Largest Common Cluster, LCC)라는 새로운 개념을 정의한다 이는 여러 사람에게서 얻은 정보에서 최대한 공통의 성질을 갖는 것들을 찾아내는 수학적이고 체계적인 방법이라 할 수 있다. 따라서 일단 LCC를 찾아내면 이를 특징(feature)으로 삼아 패턴분류기를 설계하면 여러 사람에게 적용가능한 생체신호 인식기를 설계할 수 있게 된다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.23-26
/
2023
본 논문에서는 서술형 수학 문제 풀이 모델의 숫자 대소관계 파악을 위한 명시적 자질추출방식 Explicit Feature Extraction(EFE) Reasoner 모델을 제안한다. 서술형 수학 문제는 자연현상이나 일상에서 벌어지는 사건을 수학적으로 기술한 문제이다. 서술형 수학 문제 풀이를 위해서는 인공지능 모델이 문장에 함축된 논리를 파악하여 수식 또는 답을 도출해야 한다. 때문에 서술형 수학 문제 데이터셋은 인공지능 모델의 언어 이해 및 추론 능력을 평가하는 지표로 활용되고 있다. 기존 연구에서는 문제를 이해할 때 숫자의 대소관계를 파악하지 않고 문제에 등장하는 변수의 논리적인 관계만을 사용하여 수식을 도출한다는 한계점이 존재했다. 본 논문에서는 자연어 이해계열 모델 중 SVAMP 데이터셋에서 가장 높은 성능을 내고 있는 Deductive-Reasoner 모델에 숫자의 대소관계를 파악할 수 있는 방법론인 EFE 를 적용했을 때 RoBERTa-base 에서 1.1%, RoBERTa-large 에서 2.8%의 성능 향상을 얻었다. 이 결과를 통해 자연어 이해 모델이 숫자의 대소관계를 이해하는 것이 정답률 향상에 기여할 수 있음을 확인한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.322-324
/
2020
본 논문에서는 스테레오 영상으로부터 얻은 특징점들을 활용하여 기초행렬(Fundamental matrix)을 추정하는 실험을 한다. 획득한 영상들은 보정이 되어 있으며, 특징점 추출 후 매칭은 RANSAC 등의 기존 알고리즘을 활용한다. 기초 행렬을 얻기 위해 스테레오 영상으로부터 정의되는 에피폴라 점, 에피폴라 선, 에피폴라 평면을 정의하고, 이들로부터 얻을 수 있는 기하학적 관계식을 활용하여 기초행렬을 수학적으로 추정해 보고, 실험으로 수학적 이론을 검증해 본다.
본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.
Even though statistics is considered as one of the areas of mathematical science in the school curriculum, it has been well documented that statistics has distinct features compared to mathematics. However, there is little empirical educational research showing distinct features of statistics, especially research into the understanding of statistical concepts which are different from other areas in school mathematics. In addition, there is little discussion of a relationship between the ability of mathematical thinking and the ability of understanding statistical concepts. This study extracted some important concepts which consist of the fundamental statistical reasoning and investigated how mathematically high achieving students understood these concepts. As a result, there were both kinds of concepts that mathematically high achieving students developed well or not. There is a weak correlation between mathematical ability and the level of understanding statistical concepts.
수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 그리고 이 추상들이 모여 분류(유사성을 기초로 해서 우리의 경험을 함께 묶는 것)가 되고 그 다음에 이름이 붙여진다. 이것이 바로 개념(concept)이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 그리고 이 개념들은 여러 가지 모양으로 결합하여 스키마(Schema)라고 부르는 개념 구조를 형성하게 되는데, 이 스키마(Schema)는 수학적 사고를 하는데 매우 중요한 역할을 한다. 본 논문에서는 기존의 초등학교 교과서의 소수의 관한 내용에서 교차연결고리가 부족한 부분을 보충한 스키마식 수업 모델을 제시하여 수학의 연계성과 위계성을 강조함으로써 학생들로 하여금 수학의 구조를 파악하게 하여 수학에 대한 흥미와 필요성을 알게 하는데 그 목적을 두고 있다.
In this study we analyzed the teaching units for the area of geometrical figures by the same method in the previous research of Kang, Wan and Kim, Nam Jun in 2010, where they extracted the teaching units based on the mathematics curriculum based on the theory of Wittmann (1984). Teaching units are a systematic organization of the essential contents for mathematics education according to 4 elements, objectives, data, functions, and backgrounds. In this study, the features and titles of the teaching units, extracted from the area of geometrical figures in revised mathematics curriculums in 2007, are analyzed and categorized as accepting of concept type, application of concept type, and acquiring of relation type. Their meanings for education are investigated, in addition, the way of their practical application to research of education for the area of geometrical figures. The teaching units are a model consistently compensated and evolved rather than fixed. It will be an important material for establishing new educational courses if the teaching units are more systematically studied by mathematics researchers and teachers in educational fields.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.