• Title/Summary/Keyword: 수평형 지중열교환기

Search Result 25, Processing Time 0.026 seconds

A Experimental Study for Horizontal Geothermal Heat Exchanger System Performance during Intermediate Season (중간기 수평형 지중열교환기의 성능 검토를 위한 실험적 연구)

  • Hwang, Yong Ho;Cho, Sung Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • The horizontal earth-to-air heat exchanger (HEAHES) thermal performance is excellent on cooling and heating season in hot arid regions was reported. But the HEAHES thermal performance results is difficult to find on intermediate season. This paper was performed full scaled experiment to investigate HEAHES thermal performance on intermediate season (Oct. 10th ~ 12th Nov. 12th). When the air entering to HEAHES is the lowest $2.3^{\circ}C$, outlet air temperature from HEAHES is $15.95^{\circ}C$ through PVC pipe that buried length 60m and depth 3m. When the air entering to HEAHES is the highest $24.8^{\circ}C$, outlet air temperature from HEAHES is $22.05^{\circ}C$. During intermediate season, the HEAHES COP is 2.71 in daytime and 6.53 in evening.

Analysis of Construction Cost and Influence Factors on Horizontal Ground Heat Exchangers (수평형 지중 열교환기 시스템의 시공비 및 영향인자 분석)

  • Yoon, Seok;Lee, Seungrae
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.6-13
    • /
    • 2014
  • This paper presents a computational study of thermal performance and construction cost of horizontal ground heat exchangers (GHEs). GLD (ground loop design) simulations of various type of GHEs were carried out. Construction costs were also calculated based on standard estimating, and compared with vertical type GHE system. Besides that, dummy regression analysis was conducted to study the influence of design parameters on the simulation results in horizontal ground heat exchanger system.

The Study on EnergyPlus Simulation Application Feasibility for Exit Air Temperature Prediction through Horizontal Geothermal Heat Exchanger (수평형 지중 열교환기의 출구온도 예측을 위한 EnergyPlus 적용 타당성에 관한 연구)

  • Hwang, Yongho;Cho, Sungwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.131-136
    • /
    • 2016
  • Horizontal geothermal heat exchanger is affected by various factors such as pipe length, soil temperature, and outdoor environment. Simulation program is convenient for responding to various factors. The objective of this study was to determine the feasibility of using EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger in domestic. The correlation coefficient between EnergyPlus results and experimental results was 0.825. The correlation coefficient between EnergyPlus results and mathematical results was 0.722, indicating "The two values can based on Lousi on values can be Our results indicate that it is possible to use EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger.

The feasibility study for the building integrated geothermal system using the horizontal heat exchanger (수평형 지중열교환기를 이용한 건물일체형 지열시스템의 도입타당성 분석)

  • Chae, Ho-Byung;Nam, Yujin;Yoon, Sung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • Recently, in order to prevent increasing energy usages in the international community, many countries have attempted to develop the innovative renewable energy systems. Among the renewable energy systems, Ground source heat pump(GSHP) system which supply the heating, cooling and hot water in the building has been attracted by its stability of heat production and high efficiency. However, the initial drilling costs become very expensive and the construction period takes longer the other systems, because GSHP system needs more than 100 m depth drilling. In this study, in order to reduce initial costs of the GSHP, the building integrated geothermal system using the horizontal heat exchanger was developed. The heating and cooling load in the standard housing model was calculated by a simulation and the system design capacity in the high-rise apartment was decided by the total load. Based on the system design capacity, the high-rise apartments were applied to a BIGS and vertical GSHP system and there are analyzed about initial costs. In the result, the initial cost of BIGS could reduce 24% of the initial cost of the vertical GSHP system.

A Study on Burial Guideline of Horizontal Geothermal Heat Exchanger based on Exit Temperature (출구 온도를 고려한 수평형 지중열교환기의 매설 지침에 관한 연구)

  • Cho, Sung-Woo;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.553-558
    • /
    • 2014
  • Geothermal energy can be used with a geothermal heat pump or an earth-to-air heat exchange system (EAHES), which is referred to as a "cooling tube" in Korea. In this study, we suggest EAHES burial guidelines in terms of the parameters of buried pipe length and air velocity regarding the exit air temperature of EAHES. The exit air temperature for EAHES in three regions (Changwon, Busan and Seoul) was calculated with variation in buried pipe length and air velocity at ${\Phi}100mm$ and ${\Phi}200mm$. In conclusion, variation in the buried pipe length is more effective than that of air velocity to achieve the required exit air temperature.

Evaluation of Conventional Prediction Model for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchanger (수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가)

  • Sohn, Byong-Hu;Wi, Ji-Hae;Han, Eun-Seon;Lim, Jee-Hee;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.813-824
    • /
    • 2010
  • Thermal conductivity of soils is one of the most important parameters to design horizontal ground heat exchangers. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of soil's particulate structure. This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data available in the literature. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state sands. It came out that the model developed by Cote and Konrad gave the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity and water content, soil type on the horizontal ground heat exchanger design. The analysis shows that a required pipe length for the horizontal ground heat exchanger is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

  • PDF

Suggestions of Design Method for a Horizontal Straight Ground Heat Exchanger (수평 직선형 지중 열교환기 설계 방안 제안)

  • Kim, Min-Jun;Lee, Seung-Rae;Yoon, Seok;Jeon, Jun-Seo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2016
  • This paper presents a design method for the horizontal straight ground heat exchanger (GHE) based on the Kavanaugh design method. In order to examine suitability of the suggested design method, a horizontal line type GHE was installed in a steel box of which the size was $5m{\times}1m{\times}1m$ filled with dried Joomunjin standard, and a thermal response test (TRT) was conducted for 21 hours. A numerical analysis was performed for a simulation of a peak month operation and for its verification by finite element method (FEM). According to the simulation results, it was concluded that the suggested design method for a horizontal straight GHE is reliable for the estimation of a design length.

Thermal Diffusivity Measurement of Backfilling Materials for Horizontal Ground Heat Exchanger Using Dual-Probe Method (이중탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 측정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • Storage and transfer heat in soils are governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the measured results of the thermal diffusivity of soils(silica, quartzite, limestone, sandstone, and masonry soils) used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities and volumetric heat capacities using dual-probe method and (ii) compare the estimates from the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Measurements made by using the dual-probe method agreed well with independent estimates obtained using the single-probe method.

A Study on Horizontal Ground Source Heat Pump Systems (수평형 지열원 히트펌프 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.160-165
    • /
    • 2006
  • Ground source heat pump (GSHP) or geothermal heat pump systems (GHPs) are recognized to be outstanding heating and cooling systems. Most of GSHP systems installed and studied in korea are vertical GSHP systems. A horizontal GSHP system was installed in greenhouse and investigated for the performance characteristics. The results of the study showed that the heating coefficient of performance of the heat pump was 3.64 and the overall heating coefficient of performance of the system was 3.31. The pumping power was obtained as 28.0 W/kW and the required ground heat exchanger length was 53.3 m/kW of rejection heat of condenser. The heat extraction rate was, on average, 14.58 W/m of ground heat exchanger length and trench length is 27.7 m/kW of rejection heat of condenser.