• Title/Summary/Keyword: 수평형

Search Result 1,106, Processing Time 0.029 seconds

수평형 열화학기상증착 반응기를 이용한 고수율의 단일벽 탄소나노튜브 합성 연구

  • Jo, Seong-Il;Jeong, Gu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.47-47
    • /
    • 2018
  • 단일벽 탄소나노튜브 (Single-walled carbon nanotubes, SWNTs)는 우수한 물리적 화학적 특성을 갖고 있어 나노전자소자, 투명전도막, 에너지소자, 센서 등 다양한 분야로의 응용이 기대되고 있다. 열화학기상증착(Thermal chemical vapor deposition, TCVD)법은 SWNTs의 합성 공정이 간단하고 공정변수의 제어가 용이하다는 장점이 있어 SWNT 합성 연구에 가장 널리 사용되어 왔다. 일반적으로 금속 촉매의 박막이 증착된 합성 기판은 온도가 가장 높고 비교적 균일성이 보장되는 TCVD 반응기의 중심부에 위치시키고 공정변수를 변화해가며 연구를 진행해 왔다. 본 실험실에서는 수평형 반응기 전역에 합성 기판을 설치하여 SWNTs를 합성한 결과, 반응기의 중심보다 뒤의 영역에서 SWNTs의 합성 수율이 상당히 증가하는 것을 초기실험을 통해 확인하였다. 본 연구에서는 SWNTs 합성 시 가스 유량과 합성 온도를 변화시켰을 때 기판 위치에 따른 SWNTs의 수율 및 물성변화를 구체적으로 조사하였다. 합성가스와 촉매로는 메탄가스와 철 박막을 사용하였으며, 합성 수율의 변화는 고분해능 주사전자현미경을 이용하여 관찰하였다. 그리고 합성된 SWNTs의 형태 및 결정성은 라만분광법과 원자간힘현미경을 이용하여 평가하였다. 결과적으로, 진행하였던 모든 합성 조건에서 반응기 중심보다 뒤의 영역에서 더 고수율의 SWNTs가 합성되었으며, 최적 합성 조건의 SWNTs 면밀도는 99% 이상이었다. 본 연구의 결과는 CVD 공정을 이용하는 다양한 저차원 나노 소재의 합성에도 적용될 수 있을 것으로 사료되며, 추후 이에 대한 연구가 필요하다.

  • PDF

Effect of Soil Thermal Conductivity and Moisture Content on Design Length of Horizontal Ground Heat Exchanger (토양 열전도도와 수분함량이 수평형 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2012
  • This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state soils. It came out that the model developed by Cote and Konrad gave the best overall prediction results for unsaturated soils available in the literature. However, it still needs to be improved to cover a wider range of soil types and degrees of saturation. In the present study, parametric analysis is also conducted to investigate the effect of soil type and moisture content on the horizontal ground heat exchanger design. The analysis shows that horizontal ground heat exchanger pipe length is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that horizontal ground heat exchanger size can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

Thermal Diffusivity Measurement of Backfilling Materials for Horizontal Ground Heat Exchanger Using Dual-Probe Method (이중탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 측정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • Storage and transfer heat in soils are governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the measured results of the thermal diffusivity of soils(silica, quartzite, limestone, sandstone, and masonry soils) used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities and volumetric heat capacities using dual-probe method and (ii) compare the estimates from the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Measurements made by using the dual-probe method agreed well with independent estimates obtained using the single-probe method.

A Study on the Seasonal Performances Evaluation of the Horizontal-type Geothermal Heat Exchanger Installed in the Foundation Slabs of Complex Building (주상복합 건축물의 기초 슬래브에 설치된 수평형 지열교환기의 계절별 성능평가)

  • Hwang, Kwang-Il;Woo, Sang-Woo;Kim, Joong-Hun;Shin, Seung-Ho;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2007
  • This study evaluates the seasonal performances of the horizontal-type geothermal heat exchanger(HGHEX) installed into the foundation slabs of the complex building located at Seoul. The geothermal system is consisted with totally 31,860m long HGHEX, 16 GSHPs (Ground-source Heat Pump) and 8 circulation pumps. This system supplies cooling and heating to the lobby(F1) and the common spaces(BF1). The average heat exchange temperature differences are $2.7^{\circ}C\;and\;2.5^{\circ}C$ in the summer, $1.5^{\circ}C\;and\;0.5^{\circ}C$ in the winter for the F1 and BF1 respectively. From these results, approximately 400Gcal and 180Gcal of geothermal energy are assumed to have been used during the summer and winter seasons respectively. As a conclusion, the geothermal system is reviewed as a effective utility for heating and cooling at the point of seasonal performances.

Prediction of the Heat Exchange Rate for a Horizontal Ground Heat Pump System Using a Ground Heat Transfer Simulation (지중열 이동 시뮬레이션을 이용한 수평형 지열시스템의 채열성능 예측)

  • Nam, Yujin;Chae, Ho-Byung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.297-302
    • /
    • 2013
  • The ground source heat pump (GSHP) system has attracted attention, because of its stability of heat production, and the high efficiency of the system. However, there are few studies on the prediction method of the heat exchange rate for a horizontal GSHP system. In this research, in order to predict the performance of a horizontal GSHP system, coupled simulation with a ground heat transfer model and a heat exchanger circulation model was developed, and calculation of heat exchange rate was conducted by the developed tool. In order to optimally design the horizontal GSHP system, the flow rate of circulation water, and the depth and buried spaces of heat exchangers were considered by the case study. As a result, the temperature of circulation water and the heat exchange rate of the system were calculated in each case.

Study on construction method of horizontal ground heat pump system using the building structure (건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

A Experimental Study for Horizontal Geothermal Heat Exchanger System Performance during Intermediate Season (중간기 수평형 지중열교환기의 성능 검토를 위한 실험적 연구)

  • Hwang, Yong Ho;Cho, Sung Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • The horizontal earth-to-air heat exchanger (HEAHES) thermal performance is excellent on cooling and heating season in hot arid regions was reported. But the HEAHES thermal performance results is difficult to find on intermediate season. This paper was performed full scaled experiment to investigate HEAHES thermal performance on intermediate season (Oct. 10th ~ 12th Nov. 12th). When the air entering to HEAHES is the lowest $2.3^{\circ}C$, outlet air temperature from HEAHES is $15.95^{\circ}C$ through PVC pipe that buried length 60m and depth 3m. When the air entering to HEAHES is the highest $24.8^{\circ}C$, outlet air temperature from HEAHES is $22.05^{\circ}C$. During intermediate season, the HEAHES COP is 2.71 in daytime and 6.53 in evening.

An Experimental Study on the Thermal Performance Change of Horizontal-type Geothermal Heat Exchanger with Long-Term Operation (수평형 지열교환기 성능의 경년변화)

  • Hwang, Kwang-Il;Woo, Sang-Woo;Kim, Joong-Hun;Yang, Gi-Young;Shin, Seung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.725-730
    • /
    • 2006
  • The purpose of this study is on the performance evaluation of horizontally installed GHEX(Geothermal Heat Exchanger, HGHEX) which has been operated for 5 years successfully. Followings are the results. Firstly, in summer season, on Aug. 2000, $33^{\circ}C$ water was flowing out from HGHEX with continuous operating method, and $27{\sim}29^{\circ}C$ with interval operating method on Jul. 2005. But $2.5{\sim}3.0^{\circ}C$ temperature differences are gained from HGHEX. Secondly, in winter season, on Nov. 2000, $25^{\circ}C$ water was flowing out from HGHEX with continuous operating method, and $13{\sim}15^{\circ}C$ with interval operating method on Jan. 2006. But with each operating method, only $0.1^{\circ}C$ and $0.7^{\circ}C$ temperature differences are gained from HGHEX respectively. As the conclusion of this study, at the point of continuos operating method, seasonal balance of heating and cooling loads, and at the point of interval operating method, balance for geothermal restoring time respectively must be considered for better system performances.

  • PDF

The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 기초의 거동 특성 및 지지력결정을 위한 파괴기준)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.27-40
    • /
    • 2011
  • In this study, we performed model lateral load test for connected-type foundations of transmission tower with bar in clay, and proposed failure standard and measuring method to estimate ultimate lateral bearing capacity. For this study, we performed model lateral load tests in Iksan, Jeollabukdo and analyzed load-displacement characteristic of the model. We manufactured model foundation of transmission tower connected with bar and that considered a change of rigidity. We installed various measuring sensors to find general foundation behavior. From the test results, we measured, compared and analyzed load capacities, and then proposed failure standard to estimate bearing capacity for connecting type foundation.

Design of Micro-Spring for Vertical Type Probe Card (마이크로 스프링을 이용한 수직형 프로브 카드 제작)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.667-670
    • /
    • 2005
  • 본 논문은 100um와 80um의 텅스텐 와이어를 이용하여 세라믹(Ceramic)기판에 홀(Hole)을 뚫어 텅스텐 와이어를 수직으로 세우는 방식으로 수직형의 마이크로 스프링을 제작하였다. 마이크로 스프링의 설계를 위해 제한된 실험 결과와 신경회로망을 이용하여 텅스텐 와이어의 두께와 높이, 쉬프트(Shift)의 양을 변화시키면서 장력(Tension force)을 모델링하였고 제작을 통해 검증하였다. 이는 기존의 수평형 프로브카드의 한계를 대체할 수 있는 수직형 프로브카드의 핵심 모듈로서 멀티다이(Multi Die) 뿐만 아니라 범핑(Bumping)타입의 칩 테스트도 가능하다.

  • PDF