• 제목/요약/키워드: 수평축 터빈

검색결과 99건 처리시간 0.03초

한국형 해상 풍력터빈 블레이드 최적설계 알고리즘 연구 (Numerical Optimization of Offshore Wind Turbine Blade for Domestic Use)

  • 이기학;김태윤;김규홍;이경태;이동호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.47-50
    • /
    • 2005
  • 본 연구의 목적은 차세대 대체에너지로 각광받는 풍력발전 중에서 육상발전보다 여러 가지 이점이 있는 해상에서의 한국형 풍력터빈 블레이드의 최적 형상을 위 한 알고리즘을 구현하는 것이다. 풍력터빈 블레이드에서 깃익형의 공기 역학적 특성은 매우 중요한 사항이다. 이를 위해서 익형 성능예측에 층류에서 난류로의 천이과정을 포함하는 XFOIL을 이용하여 블레이드 익형 단면의 양력과 항력 분포를 해석하였다. 첫 번째 수준의 설계변수는 운용범위내의 바람의 속도와 블레이드 지름, 축 회전수이며, 각 단면에서의 비틀림각과 시위길이는 두 번째 수준의 설계 변수이다. 운용범위 내의 각 설계점에서 익형의 공력 변수들과 최소에 너지손실 조건을 이용하여 시위길이와 피치각 분포를 최적화하였다. 각각의 설계점에서 결과를 바탕으로 풍력발전의 설계 운용범위에서 반응면을 구성하고 구배최적화 기법을 통해 요구동력의 제약함수를 만족하고 효율을 최대로 하는 블레이드 형상을 구현하였다. 최적형상에 대해 탈설계점 해석을 수행하여 그 성능을 구하였다.

  • PDF

예인수조를 이용한 조류발전 터빈의 동력 계측 및 비교 연구 (Study on Power Measurement and Comparison of Marine Current Turbine in a Towing Tank)

  • 도인록;김문찬;이승기;현범수
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제14권4호
    • /
    • pp.230-238
    • /
    • 2011
  • 100 kW 용량의 조류발전용 수평축 터빈(HAT)임펠러의 성능에 대한 연구를 위하여 단면 및 날개 끝 형상을 변형시킨 지름700 mm의 모형 임펠러를 설계하고 부산대학교 예인수조에서 모형 시험을 수행하였다. 축척효과를 확인하기 위하여 각각의 임펠러에 대하여 회전수를 바꾸어 레이놀즈수 변화에 따른 특성을 살펴보았으며 날개끝속도비(TSR)별로 비교 검토 하였다. 본 연구에서 제안된 레이크 임펠러의 성능이 기존 임펠러 보다 우수함을 확인 하였으며 추후 실험시설을 보완하여 보다 큰 레이놀즈수에서 실험을 수행하고 계산과 비교할 예정이다.

수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구 (A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs)

  • 김범석;김정환;남청도;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구 (A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD)

  • 김유택;김범석;김정환;남청도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발 (Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT)

  • 모장오;김범석;김만응;최영도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

수평축 풍력발전용 터빈의 유동해석 및 성능예측에 대한 CFD의 적용성 평가에 관한 연구 (A Study on Evaluation for the Applicatioin of a CFD Code to Flow Analysis and an Estimate of Performance for HAWT)

  • 김범석;김정환;김유택;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2192-2197
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TV-Delft. The CFD results of which is somewhat consist with BEM results, under an error less than 10%.

  • PDF

BEMT를 적용한 20kW 수평축 풍력터빈 형상설계 및 성능해석 (A Study on the Configuration Design and the Performance Analysis of the 20kW HAWT based on BEMT)

  • 강호근;남청도;이영호;김범석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.669-676
    • /
    • 2006
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) is developed by use of BEMT, which is the standard computational technique for prediction of power curves of wind turbines. The Prandtl's tip loss theory is adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil are predicted via X-FOIL and the post stall characteristics of S-809 also are estimated by the Viterna's equations.$^{[13]}$ All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results. performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data are used for the power Prediction of the FIL-20 respectively The comparison results shows good agreement in power prediction.

CFD에 의한 수평축 풍력발전용 터빈의 유동해석 및 성능예측에 관한 연구 (A Study on Flow Analysis and an Estimate of performance for HAWT by CFD)

  • 김정환;김범석;김진구;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.906-913
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is to evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore. the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TU-Delft. The CFD results of which is somewhat consist with BEM results. under an error less than 10%.

1MW급 수평축 풍력터빈 로터 블레이드 설계 및 CFD에 의한 공력성능 평가 (Rotor Blade Design of a 1MW Class HAWT and Evaluation of Aerodynamic Performance Using CFD Method)

  • 모장오;이영호
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2012
  • In this investigation, the aerodynamic performance evaluation of a 1MW class blade has been performed with the purpose of the verification of target output and its clear understanding of flow field using CFD commercial code, ANSYS FLUENT. Before making progress of CFD analysis the HERACLES V2.0 software based on blade element momentum theory was applied for confirmation of quick and approximate performance in the preliminary stage. The blade was designed to produce the target output of a 1MW class at a rated wind speed of 12m/s, which consists of five different airfoils such as FFA W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power by CFD is approximately 1.195MW, which is converted into the electrical power of 1.075MW if the system loss is considered to be 0.877.