• Title/Summary/Keyword: 수평진동

Search Result 340, Processing Time 0.027 seconds

Two Dimensional Added Inertia Coefficients for Straight Framed Hull Forms in Horizontal and Torsional Vibration. (직선늑골선형(直線肋骨船型)의 수평(水平) 및 비틂진동(振動)에 있어서의 2차원적(次元的) 부가관성계수(附加慣性係數))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.3-12
    • /
    • 1975
  • As for two dimensional added mass coefficients for straight framed hull forms in a free surface of an ideal fluid, theoretical calculations by F.M. Lewis, vertical, K. Wendel, J.H. Hwang, and etc. are available; vertical modes of rectangular and triangle sections by Lewis, vertical, horizontal and torsional models of rectangular and triangle section by Wendel, and systematical calculations for vertical modes of single chine forms by Hwang. In this paper, employing the conformal transformation by which a unit circle and its exterior region can conformally mapped to a polygon and its exterior region, the author calculated two dimensional added inertia coefficients systematically for straight framed sections with single chine in horizontal and torsional modes of vibrations. As the results, it was found that sloping side angle is an important factor measuring the magnitude of two dimensional added inertia coefficient for a set of given values of the sectional area coefficient and the beam-draft ratio. To grasp it cleary in physical sense, pressure distributions are investigated for some typical section contours. The numerical results are presented graphically in the form of two dimensional added sectional area coefficients with beam-draft ratios and sloping side angles as parameters, so that the data may conveniently utilized for estimation of the added inertia coefficients based on a three parameter technique.

  • PDF

Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank (구조물의 탄성을 고려한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-116
    • /
    • 1990
  • The liquid sloshing in an elastic tank is a fluid-structure interaction problem. It requires nonlinear analysis to solve the complicated physics involved in the large interaction of fluid-structure, the variation of dynamic characteristics of structure due to hydrodynamic loading, and the distorsion of fluid flow due to structural vibration. In this paper a Lagrangian FEM is introduced to analyze the liquid sloshing in an elastic tank assuming that the elastic wall is one degree of freedom rigid wall. Numerical integration is performed using an implicit-explicit algorithm, which is formed by mixing the predictor-corrector method and the Runge-Kutta 4th order method. The influence of dynamic characteristics of the sloshing tank on the fluid flow is discussed. The numerical method is also applied for the simulation of the wall generated wave in the tank.

  • PDF

Flight Dynamic Simulation Program for Analyzing Static and Dynamic Behaviors of Aircraft with Flexible Characteristics (유연 특성 항공기의 동적·정적 거동 분석을 위한 비행 동역학 시뮬레이션 프로그램)

  • Jin, Jaehyun;Paek, Seung-Kil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Modern aircraft are high-performance and lightweight. Thus, the characteristics of the flexible structure appear and affect flight performance or limit it. These flexible characteristics need to be analyzed from the early stages of aircraft design. To this end, a program to analyze the dynamic and static behavior of flexible aircraft has been developed and the results are presented. Based on the multi-body dynamics simulation technique, rigid flight mechanics, structural vibrating behavior, and unsteady aerodynamics have been developed and integrated. Lastly, the level flight and the turn flight of the flexible characteristic aircraft have been analyzed using this integrated simulation program.

Application of proper orthogonal decomposition on cylinder wake (원기둥 후류에 대한 적합 직교 분해법 적용)

  • Ree, Kwan Ho;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.256-256
    • /
    • 2022
  • 레이놀즈 분해법은 유속을 비롯한 변수를 평균 성분과 변동 성분으로 분해하는 분석 방법으로, 난류 분석의 기본이 되는 방법이다. 그러나 유체 내에 장애물이 존재할 경우, 흐름에 큰 와류가 존재하여 난류 변동 성분과 구분되는 고유 구조가 형성되는데, 이러한 경우에 레이놀즈 분해법을 적용하면 고유 구조의 변동 성분이 난류로 처리되어 난류 강도가 과다하게 책정될 수 있다는 한계점이 있다. 이에 대한 대안으로 제안된 것이, 변수를 평균 성분, 파동 성분, 변동 성분으로 분해하는 삼중 분해법이다. 삼중 분해법은 흐름 내의 고유 구조를 추출하는 것을 가능하게 하여 다양한 연구에서 사용되어왔다. 삼중 분해법을 구현하기 위해 이용되는 방법론 중 하나로, 공분산 행렬을 이용하여 유속장을 분해하는 방법인 적합 직교 분해법이 많이 사용된다. 본 연구에서는 원기둥 후류에 적합 직교 분해법을 사용하여 삼중 분해법을 시행하고, 후류의 흐름 구조를 분석하는 것을 목표로 하였다. 영상 유속계를 사용하여 실험을 통해 원기둥 후류의 수평 유속장을 측정하였고, 측정 자료에 적합 직교 분해법을 적용한 결과, 첫 두 모드에서 큰 규모의 와류가 파동 형태로 전파되는 것이 관찰되어 고유 구조의 존재를 확인할 수 있었다. 해당 성분을 삼중 분해법의 파동 성분으로 상정하였고, 푸리에 분석을 적용한 결과에서도 원기둥 후류의 고유 진동수가 뚜렷하게 나타나는 것을 확인하였다. 또한, 원기둥 후류의 에너지 전달 구조를 확인하기 위하여 에너지 방정식에 삼중 분해법을 적용하여 식을 유도하고, 실험 자료로부터 각 항을 계산하여 비교해보았다.

  • PDF

Development of a split beam transducer for measuring fish size distribution (어체 크기의 자동 식별을 위한 split beam 음향 변환기의 재발)

  • 이대재;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.196-213
    • /
    • 2001
  • A split beam ultrasonic transducer operating at a frequency of 70 kHz to use in the fish sizing echo sounder was developed and the acoustic radiation characteristics were experimentally analyzed. The amplitude shading method utilizing the properties of the Chebyshev polynomials was used to obtain side lobe levels below -20 dB and to optimize the relationship between main beam width and side lobe level of the transducer, and the amplitude shading coefficient to each of the elements was achieved by changing the amplitude contribution of elements with 4 weighting transformers embodied in the planar array transducer assembly. The planar array split beam transducer assembly was composed of 36 piezoelectric ceramics (NEPEC N-21, Tokin) of rod type of 10 mm in diameter and 18.7 mm in length of 70 kHz arranged in the rectangular configuration, and the 4 electrical inputs were supplied to the beamformer. A series of impedance measurements were conducted to check the uniformity of the individual quadrants, and also in the configurations of reception and transmission, resonant frequency, and the transmitting and receiving characteristics were measured in the water tank and analyzed, respectively. The results obtained are summarized as follows : 1. Average resonant and antiresonant frequencies of electrical impedance for four quadrants of the split beam transducer in water were 69.8 kHz and 83.0 kHz, respectively. Average electrical impedance for each individual transducer quadrant was 49.2$\Omega$ at resonant frequency and 704.7$\Omega$ at antiresonant frequency. 2. The resonance peak in the transmitting voltage response (TVR) for four quadrants of the split beam transducer was observed all at 70.0 kHz and the value of TVR was all about 165.5 dB re 1 $\mu$Pa/V at 1 m at 70.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The resonance peak in the receiving sensitivity (SRT) for four combined quadrants (quad LU+LL, quad RU+RL, quad LU+RU, quad LL+RL) of the split beam transducer was observed all at 75.0 kHz and the value of SRT was all about -177.7 dB re 1 V/$\mu$Pa at 75.0 kHz with bandwidth of 10.0 kHz between -3 dB down points. The sum beam transmitting voltage response and receiving senstivity was 175.0 dB re 1$\mu$Pa/V at 1 m at 75.0 kHz with bandwidth of 10.0 kHz, respectively. 3. The sum beam of split beam transducer was approximately circular with a half beam angle of $9.0^\circ$ at -3 dB points all in both axis of the horizontal plane and the vertical plane. The first measured side lobe levels for the sum beam of split beam transducer were -19.7 dB at $22^\circ$ and -19.4 dB at $-26^\circ$ in the horizontal plane, respectively and -20.1 dB at $22^\circ$ and -22.0 dB at $-26^\circ$ in the vertical plane, respectively. 4. The developed split beam transducer was tested to estimate the angular position of the target in the beam through split beam phase measurements, and the beam pattern loss for target strength corrections was measured and analyzed.

  • PDF

Study on the technique improvement of vacuum packaging for rice exported (수출 쌀 진공포장기술 개선 연구)

  • Choi, Dongsoo;Park, Seokho;Kim, Jinse;Kim, Yonghun;Lee, Sujang;Park, Jongwoo;Park, Cheonwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.100-100
    • /
    • 2017
  • 2016년부터 중국에 수출한 진공포장 쌀이 진공이 풀려 중국 현지 소비자들에게 품질에 대한 신뢰저하로 외면 받아 판매에 어려움을 겪었다. 진공풀림 원인은 주로 포장재의 모양, 과열 열접착 및 운송 중 부주의 등을 들 수가 있다. 따라서 본 연구에서는 쌀 진공포장 후 진공 풀림현상이 발생되는 원인을 분석하고, 진공포장에 적절한 포장재 및 취급조건에 대해 구명하여, 중국 쌀 수출 시 품질신뢰도 및 경쟁력 제고로 쌀 수출 확대를 위해 진공 포장재, 진공포장기술 및 운송 취급 방법을 제시하고자 하였다. 미곡종합처리장에서 사용하고 있는 플라스틱 필름 포장재의 적합 여부를 살펴보기 위하여 산소투과도 및 투습도를 산소투과도 측정장치(OX-Tran Model 2/61, Mocon, USA), 투습도 측정장치(Permatran-W Model 3/33, Mocon, USA)를 이용하여 측정하였다. 적정 열접착 온도를 구명하기 위하여 열접착 작업시간 간격 3, 5, 10초 3수준으로 하고 가열시간을 0.2초~2초까지 9수준으로 설정하여 포장필름을 열접착한 후 접착상태를 조사하였다. 진공 포장된 쌀을 골판지상자에 2차 포장하여 운송할 때 진공풀림 현상이 발생 여부를 조사하기 위해 가상 운송시험을 진동시험 장치를 이용하여 수직 및 수평으로 진동시험을 수행하였으며, 또한 취급조건에 따라 진공풀림을 조사하기 위하여 골판지 상자단위, 비닐포장 단위로 50, 70, 90cm 높이에서 낙하 시험을 하고 진공풀림여부를 조사하였다. 유통 중인 쌀 진공 포장재는 나이론(nylon)+선형저밀도폴리에틸렌(LLDPE) 복합필름으로 산소투과도가 $30{\sim}70cc/m^2{\cdot}day$, 투습도가 $2{\sim}4.5g/m^2{\cdot}day$로 산소투과도 및 투습도가 충분히 낮아 진공포장재로 적합했으며, 적정 열접착온도 조건은 $130{\sim}150^{\circ}C$에서 1~1.5초가량 가열해야 되는 것으로 조사되었다. 진동시험 및 낙하시험결과, 골판지박스 포장 시 완충재를 사이에 넣은 경우 진골풀림이 적었고, 상자단위나 비닐포장단위 모두 가능한 50cm보다 높은 곳에서 낙하충격을 받지 않도록 취급해야 할 것으로 판단되었다.

  • PDF

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF

Improvement of Multi-beam Echo Sounder's Depth Accuracy (다중빔 음향측심기 수심 정확도 개선)

  • Choi Chul Eung;Kim Youn Soo;Suh Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Multi-beam echo sounder is more precise and efficient than single beam echo sounder relatively because it is able to survey a wide area with 3 times or 4 times swath width as much as the depth of water using multi-beam echo sounder. It is sure to be needed to control supplementary equipment accurately, however, because the principle of creation and measurement of the beam is elaborate and influenced a great deal by vessel's motion. We analyzed using visual and statistical methods in both sections of the depth of water where were the places of the center of the beam and ± 45° angles from the central beam to improve the precise of Multi-beam echo sounder in this study. In result, it was required to control supplementary equipment because of errors from the vibration of an inertia governor and misalignment of extra units. Therefore, we reduced the vibration from the vessel's engine by sticking rubbers to the inertia governor and measured the offset values of extra units accurately, converted them to the values of horizontal position and lined up. In result, the precise in sounding the depth at the place of ± 45° from the center of the beam was improved from the level of the 1st order to the special order in a hydrographic survey of the IHO S44 standards and a phenomenon of ripple patterns in the overlapped area by misalignment was decreased remarkably.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

A Comparative Study on Dynamic Behavior of Soil Containers that Have Different Side Boundary Conditions (측면 경계 조건이 다른 토조들의 동적거동 비교에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Son, Su-Won;Na, Ho-Young;Son, Jeong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.107-116
    • /
    • 2011
  • Rigid soil containers (or rigid boxes) are often used for 1g shaking table tests. The rigid boxes, however, do not accurately simulate the amplification of ground acceleration and phase difference of seismic motion in the model ground due to the confinement of shear deformation and the reflection of seismic wave at the box walls. Laminar soil containers (or laminar shear boxes) can simulate the free field motion at convincingly superior accuracy than the rigid ones. In this study, the soft ground is modeled for both types of boxes and is subjected to seismic loading using a 1g shaking table. The comparison of the results using the two types of soil containers illustrates that, in case of the rigid box, the ground acceleration shows non uniform distribution and the phase synchronization of input motion. Whereas, the dynamic behavior of the laminar shear box shows good agreement with the free field behaviors such as the amplification of ground acceleration and the occurrence of phase difference.