• Title/Summary/Keyword: 수평변위비

Search Result 248, Processing Time 0.023 seconds

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.

The Lateral Load Capacity of Bored-Precast Pile Depending on Injecting Ratio of Cement Milk in Sand (사질토 지반에서 시멘트밀크 주입비에 따른 매입말뚝의 수평지지력)

  • Hong, Won-Pyo;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.99-107
    • /
    • 2013
  • In order to investigation Lateral bearing capacity of bored-precast pile, we carried out the analysis of the relationship between Lateral load and horizontal displacement using the result of horizontal pile load test. The six piles injected cement milk of 50%, 70% and 100% of the embedded length of pile were used in the horizontal pile load test. The horizontal displacement, yielding load and horizontal bearing capacity are mainly affected by The injecting ratio of cement milk (injected length of cement milk/embedded length of pile). As the injecting ratio of cement milt is increased, the starting point of horizontal displacement in piles become close to the ground surface and the amount of horizontal displacement is decreased. Also, the horizontal bearing capacity and yielding load are highly increased with increasing the ration of cement milk. The horizontal bearing capacity and yielding load of bored pile with 1 of cement milk ratio are about two or three times those of pile with 0.5 of cement milk ratio.

Fundamental Study on the Behavior of Laterally Loaded Model Pile with Varying Water Content in Sand (사질토 지반에서 함수비 변화에 따른 모형말뚝의 수평거동에 대한 기초적 연구)

  • 김병탁;김영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.27-37
    • /
    • 2001
  • 본 연구에서는 지금까지 수행한 건조토 지반에 대한 말뚝의 수평거동 연구의 연속된 연구로서 지반내에 함수비가 존재하는 포화토 및 습윤토 지반에서의 수평거동에 대한 지반내 함수비의 영향성을 평가하고자 함이 목적이다. 말뚝의 수평거동을 고찰하기 위하여 각각 다른 함수비를 갖는 네 종류의 지반과 말뚝의 두부 및 선단 구속조건이 다른 네 종류의 말뚝조건으로 모형실험을 수행하였다. 본 연구에서 1회의 지하수 상승과 하강을 반복하는 모형실험결과에 의하면, 포화토와 습윤토 지반의 수평지지력은 건조토 지반에 비하여 각각 26%~45% 감소와 20%~36%정도 증가하는 것으로 나타났다. 말뚝두부 고정과 선단 자유조건의 경우, 동일 수평변위 1mm에서의 최대 휨모멘트는 건조토 지반에 비하여 25%의 함수비를 갖는 습윤토 지반에서 약 48% 증가하나, 34.06%의 함수비를 갖는 포화토 지반에서는 반대로 68% 감소하였다. 이는 지하수의 존재로 인한 입자간 인력에 의한 유효응력과 겉보기강도의 증가 그리고 단위중량의 증가로 설명할 수가 있다. 지속수평하중에 대한 수평변위와 최대 휨모멘트의 변화를 포화토 및 습윤토 지반에서 관찰할 수 있었다.

  • PDF

Prediction of Preceding Crown Settlement Using Longitudinal Displacement Measured on Tunnel Face in Fault Zone (단층대가 분포하는 터널에서 굴진면 수평변위를 이용한 선행 천단변위 분석)

  • Yun, Hyun-Seok;Do, Kyung-Ryang;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • Preceding displacements in tunnel are difficult to predict since the measurements of displacements after excavation can not be performed immediately. In the present study, The longitudinal displacements which can be measured immediately after excavation are used to predict the crown settlements occurring before excavation only if fault is located at the tunnel crown. Three-dimensional finite element analysis was conducted using 28 numerical models with various fault attitudes to analyze the correlation between the longitudinal displacements on tunnel face and preceding crown settlements. The results, $L_{face}/C$ ratio show 2~12% in the drives with dip models and 2~13% in the drives against dip models individually. In addition, each model has a certain $L_{face}/C$ ratio. The result of the regression analysis show that the coefficient of determination is over 0.8 in most models. Therefore, crown settlements occurring before excavation can be predicted by analyzing the longitudinal displacements occurring on tunnel faces.

Seismic Fragility Analysis of Reinforced Concrete Bridge Piers According to Damage State (철근콘크리트 교량 교각의 손상상태에 따른 지진취약도 해석)

  • Jeon, Jeong Moon;Shin, Jae Kwan;Shim, Jae Yeob;Lee, Do Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1695-1705
    • /
    • 2014
  • In the present study, a total of 275 tested specimens (149 of non-seismically designed and 126 of seismically designed) for reinforced concrete bridge piers with circular section have been investigated in order to suggest drift limits probabilistically according to damage states in seismic fragility analysis. Thus, quantitative damage states of the piers have been evaluated depending on details of the piers. Nonlinear time-history analyses have been conducted for a damaged bridge in terms of using the suggested drift limits. Then, seismic fragility analysis for a reinforced concrete bridge structure has been conducted using both suggested and existing drift limits. Comparative analyses have revealed that median values by the suggested limits is smaller than those by the existing limits. This implies that seismic performance of the structure can be overestimated when the existing limits are used.

Characteristics of Ground Movement in High Filling Abutment on Soft Ground (연약지반상 고성토 교대구간의 지반거동 특성)

  • Heo, Yol;Song, Seokcheol;Ahn, Kwangkuk;Oh, Seungtak;Seo, Sanggu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, the centrifuge tests and numerical analyses were performed to investigate the lateral flow behavior and stability of abutment when high filling was applied on the soft ground improved by SCP. The centrifuge model tests and numerical analyses were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and fill to measure the vertical and horizontal displacement at the top of abutment. As a result of the centrifugal tests, the horizontal displacement of abutment in the case 1 was 1.4cm that is almost coincide with the results of numerical and satisfy the allowable standard. On the other hand, the horizontal displacement of abutment in the case 2 was 12 cm that is 18% greater than that of numerical analysis and exceed the allowable standard. As a result of analysis, the maximum horizontal displacement of pile was 1.26 cm in case 1 that satisfies the criterion of allowable horizontal displacement (1.5 cm). In contrast, the maximum horizontal displacement of pile was 1.005 m in case 2 that greatly exceeds the allowable horizontal displacement.

  • PDF

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju II - Case of Earth Anchor Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 II -어스앵커 공법 시공 사례-)

  • Do-Hyeong Kim;Dong-Wook Lee;Seung-Hyun Kim;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, in order to evaluate the application of lateral earth pressure to earth retaining wall supported by earth anchor in Jeju. The prediction of lateral earth pressure acting on the earth retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Hong & Yun lateral earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, the predicted value of the maximum horizontal displacement for site A was about 10 to 12 times greater than the measured value, and in the case of site B, the predicted value was evaluated as about 9 to 12 times greater than the measured value. That is, both sites showed a similar increase rate in the maximum horizontal displacement by the predicted value compared to the measured value. In all field construction cases, the maximum horizontal displacement by measured values occurred in the sedimentary layer, soft rock layer, and clinker layer, and the horizontal displacement distribution was shown in a trapezoidal shape. The maximum horizontal displacement by the predicted value occurred around the clinker layer, and the horizontal displacement distribution was elliptical. In the ground with a clinker layer, the measured value showed a very different horizontal displacement tendency from the predicted value, because the clinker layer exists in the form of a rock layer and continuous layer. In other words, it is unreasonable to apply the existing prediction method, which is overestimated, because the characteristics of the earth pressure distribution in Jeju show a tendency to be quite different from the predicted earth pressure distribution. Therefore, it is necessary to conduct a research on the lateral earth pressure in the realistic Jeju that can secure more economic efficiency.

Surface damage accumulation in alumina under the repeated Inclined contact forces (수직-수평 반복하중을 받는 알루미나 표면에서의 피로손상 누적)

  • 이권용;최성종
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.61-66
    • /
    • 1999
  • 반복 응력 상태 아래서 알루미나 세라믹의 피로 표면손상 누적현상이 분석되었다. 연속 미끄럼 접촉 시에 발생하는 응력 상태를 재현하기 위해서 동시에 작용하는 수직-수평 반복 압축하중 기법이 사용되었다. 알루미나 구와 평판의 접촉면에서 알루미나 미세 결정의 피로 파손에 의한 마모 입자 형성 기구가 관찰되었고, 반복하중의 횟수와 수직-수평 하중비가 커질수록 마모량은 증가하였다. 반복 접촉하중에 의한 표면손상 누적이 접촉 수직 변위 측정으로 정량화 되었다. 두 접촉 구조물의 강성 (하중-변위 선도의 기울기) 변화가 두 재질의 탄성계수의 변화로 표현되었다.

  • PDF

Small Scaled Laboratory Test of Eco-Friendly Backfill Materials with Bottom Ash (바톰애쉬를 이용한 환경친화적 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1889-1894
    • /
    • 2012
  • A small-scale chamber test laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Laboratory test which was simulated during construction stage was conducted. The vertical deflection of 4.43mm to 6.6mm, and the horizontal deflection of 5.49mm to 15.9 mm were measured during backfilling. In case of loading, the vertical deflection of 2.41mm to 8.69mm, and the horizontal deflection of 1.66mm to 2.53mm were measured. Its residual deflections were 1.40mm to 5.93mm for vertical and 1.66mm to 2.53mm for lateral. The vertical and horizontal deflecto of controlled low strength materials were smaller than that of sand backfill. Also, it was same trend for the measured surface settlement.