• Title/Summary/Keyword: 수평면 안정성

Search Result 83, Processing Time 0.026 seconds

A Study on the Changes of Accommodative Function in Respect to the Viewing Angle (주시각도에 따른 조절기능의 변화)

  • Lee, Hark-Jun;Kim, Jung-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the relationship between the accommodative facility, blink rate and accommodative lag according to the change of angles of main viewpoint of near distance worker and study an appropriate viewing angle that mitigates asthenopia, such as headaches or eye fatigue accompanied when reading and staring at the computer or TV for a long time. Methods: Total of 27 people including 12 male university students and 15 female university students in the age of 20 to 36 with frequent near distance works, such as computers, were selected to study the accommodative facility, the blink rate and the accommodative lag in accordance with the change of viewing angles of the near distance workers. The refraction error was corrected completely and the phoropter was shifted to near distance mode to locate the near distance indication at 40 cm. The accommodative facility and the blink rate were measured for one minute at each viewing direction of $40^{\circ}$ downward, $20^{\circ}$ downward, horizontal, and $20^{\circ}$ upward directions based on the horizontal line and the accommodative lag was measured in dynamic retinoscopy using retinoscope. Results: As a result, when the main viewpoint was moved on upper direction from the $40^{\circ}$ below, the accommodative facility was reduced and the blink rate and the accommodative lag were increased so their eyes became dry and the accommodation response was reduced. Conclusions: In near distance works, the eye fatigue level can be minimized by locating a book or a computer screen $40^{\circ}$ below than the horizontal direction.

  • PDF

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

A Study on the Influence of Behavior of Underground Cavern to Cavern Size and Joint Orientation (공동 규모와 절리 방향성이 지하공동의 거동에 미치는 영향에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • This paper presents the influence of the underground structure (such as cavern and tunnels) behavior according to the rock joint orientation and underground cavern size. In order to perform this research, numerical and experimental studies are carried out. Stress aspect was assessed by quantitative according two kind of factor. In the experimental study, the laboratory model tests are performed in the several ground conditions with different underground cavern size. The results obtained from the model tests are also verified and evaluated using the numerical analysis. Due to the underground cavern, it is found from this study that the stresses developed in archcrown, side wall of underground are increased with increasing the underground cavern size. It is also investigated that the rock joint direction is one of main influence factor as risk factor, to maintain the underground cavern stability. It may be expected that this research will provide the very useful information to evaluate the underground cavern stability.

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Stress Release Zone Around Sub-structure Constructed by Non-open Cut Methods (비개착공법으로 건설된 지하구조물 주변 지반 응력이완영역 규명)

  • Seo, Ho-Sung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • For the development of areas around railway lines, subsurface construction using the non-open cut method under the railway has recently been increased. However, when a structure under a railway is constructed, the stress release of the ground is not considered an important factor in the design. In this study, laboratory tests were conducted to determine a zone of stress relaxation. Field tests using an inclinometer were performed to measure the horizontal displacement of the ground during non-open cut construction. The stress release zone and the subgrade stiffness were investigated by numerical analysis. The results of the laboratory tests indicated that the failure zone in the ground was similar to a Rankine's active earth pressure zone. The measured data from the inclinometer in the field tests showed that displacements started when a steel pipe was pushed into the ground. The results of numerical analysis show that lateral earth pressure was also close to Rankine's active earth pressure. The roadbed support stiffness of the soil around the structure decreased to 40% of the original value. The ground around the subsurface structure constructed using nonopen cut methods should be reinforced to maintain the running stability of train.

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Study on the Characteristics of Far Infrared Ray Drying for Rough Rice(III) - Performance test of far infrared ray dryer - (벼의 원적외선 건조특성에 관한 연구(III) 원적외선 건조기 성능시험)

  • 김유호;조영길;조광환;이선호;김영민;한충수;금동혁;한종규
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.213-219
    • /
    • 2003
  • 본 연구에서는 새로운 개념의 건조방법을 연구하여 곡물건조의 변화를 도모하고자 원적외선ㆍ열풍 복합열을 이용한 곡물건조기를 개발하게 되었다. 그 결과를 요약하면 다음과 같다. 가. 방사체길이가 1,680mm일 때 보다 1,470mm일 때가 방사체 표면온도가 높게 나타났고, 안정적인 것으로 나타났다. 열풍온도를 5$0^{\circ}C$로 설정했을 때 방사체의 표면온도분포는 280-29$0^{\circ}C$을 유지하였고, 6$0^{\circ}C$일 때는 30$0^{\circ}C$ 부근에서 유지되는 것을 확인할 수 있었다. 두 조건 모두에서 온도편차는 크게 나타나지 않았으므로 균일 건조가 이루어지는 것을 의미하며, 곡물의 품질저하에 영향을 미치지 않는 것으로 판단된다. 나. 열풍온도 5$0^{\circ}C$, 조사거리 125mm, 방사체 길이 1,470mm에서 방사체 길이방향으로 위치에 따라서 온도편차를 측정했을 때 버너를 기점으로 해서 근거리에서부터 원거리까지 균등 분할하여 5점의 온도를 측정하여 그 변화곡선을 분석한 결과 위치 3에서 온도가 높았고, 계속해서 위치 4, 5, 2, 1순으로 나타났다. 버너의 근거리에서보다 원거리에서 온도가 높게 나타난 것은 원적외선방사체를 통과하는 열풍이 빠져나가도록 되어있는 열풍유동관이 버너 원거리에 위치하고 있어 버너에 불꽃이 점화되면서 열풍이 방사체 끝쪽으로 유동되기 때문이다. 다. 건조실 수직면 길이방향의 온도는 열풍공기가 열풍실에서 유입되는 하단부이 온도가 높게 나타났고, 버너쪽과 송풍기쪽의 온도차는 나타나지 않아 온도분포의 좌우 대칭이 잘 되어 균일 건조가 되는 것으로 판단된다 이러한 현상은 건조실의 수평면에 대해서도 같은 현상이 나타났다. 라. 바닥면에서 상부로 올라갈수록 낮은 온도분포를 나타내고 있는 것은 상부에는 외부공기가 유입되면서 온도가 떨어지는 반면 하부에는 외부공기 유입이 적기 때문으로 사료된다. 또한 열풍실의 길이방향 위치별 온도 분포에서도 같은 현상으로 나타났고, 버너쪽과 송풍기쪽의 온도편차는 나타나지 않아 균일 건조를 기대할 수 있다. 마. 열풍온도를 45$^{\circ}C$로 설정하고 조사거리와 방사체 길이를 각각 119, 1,470mm로 하여 벼의 건조성능시험을 열풍건조기(대비구)와 비교시험 결과 시험구에서 건감률, 건조소요에너지가 각각 0.58%(w.b.), 470kcal/kg - water로 대비구보다 각각 건감율은 23% 높았고, 건조소요에너지는 2%의 절감되었다. 바. 건조기에서 발생되는 소음은 버너쪽 근처에서는 대비구 94.12㏈의 87%에 불과하였으나, 거리가 멀어질수록 차이는 크지 않았다. 이것은 버너에서 멀어질수록 외부적인 요인이 소음에 영향을 미쳤기 때문인 것으로 생각된다. 사. 시작기와 대비구간의 경제성에서 시작기의 구입가격이 20% 비싸기 때문에 시간당 고정비가 높았으나, 건조성능이 우수하여 건조비용이 69,350원/톤으로 대비구보다 14% 절감되는 것으로 나타났다.

  • PDF