• Title/Summary/Keyword: 수치 소산

Search Result 151, Processing Time 0.027 seconds

Estimation of Nonlinear Site Effects of Soil Profiles in Korea (국내 지반에서의 비선형 부지효과 예측)

  • Lee, Hong-Sung;Yun, Se-Ung;Park, Du-Hee;Kim, In-Tai
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2008
  • In a nonlinear site response analysis which is performed in time domain, small strain damping is modeled as viscous damping through use of various forms of Rayleigh damping formulations. Small strain damping of soil is known to be independent of the loading frequency, but the viscous damping is greatly influenced by the loading frequency. The type of Rayleigh damping formulation has a pronounced influence on the dependence. This paper performs a series of nonlinear analyses to evaluate the degree of influence of the viscous damping formulation on Korean soil profiles. Analyses highlight the strong influence of the viscous damping formulation for soil profiles exceeding 30 m in thickness, commonly used in simplified Rayleigh damping formulation overestimating energy dissipation at high frequencies due to artificially introduced damping. When using the full Rayleigh damping formulation and carefully selecting the optimum modes, the artificial damping is greatly reduced. Results are further compared to equivalent linear analyses. The equivalent linear analyses can overestimate the peak ground acceleration even for shallow profiles less than 20 m in thickness.

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석 )

  • Jae-Min Kim;Sang-Hoon Lee;Jae Hyun Kim;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.105-112
    • /
    • 2023
  • Steel fiber reinforced concrete (SFRC) exhibits enhanced strength and superior energy dissipation capacity compared to normal concrete, and it can also reduce crack propagation and fragmentation of concrete even when subjected to blast loads. In this study, the parameters defining failure surface and damage function of the K&C concrete nonlinear model were proposed to be applied for the properties of SFRC in LS-DYNA. Single element analysis has been conducted to validate the proposed parameters in the K&C model, which provided very close simulations on the compressive behavior of SFRC. In addition, blast analysis was performed on SFRC columns with different volume fractions of steel fibers, and the blast resistance of SFRC columns was quantitatively analyzed with Korea Occupational Safety & Health Agency (KOSHA) guidelines.

A Study on Development of Damage Impact Distance Calculation Formula to Determine Evacuation and Notification of Residents in Case of Ammonia Release Accident (암모니아 누출사고 시 주민대피 및 알림 결정을 위한 피해영향거리 산정식 개발 연구)

  • Kim, Hyun-Sub;Jeon, Byeong-Han;Lee, Myeong-Ji;Yun, Jeong-Hyeon;Lee, Hyun-Seung;Jung, Woong-Yul;Jo, Jeong-A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.308-316
    • /
    • 2020
  • This study attempted to derive an equation for calculating the damage impact distance using CARIS so that local governments can quickly determine evacuation and notification of residents in the event of an ammonia-release accident. Ammonia is an accident-causing substance and one of 16 substances to prepare for resident evacuation. It is the most frequently occurring chemical with 58 chemical accidents from 2014~2019. The study derives an equation for calculating the damage impact distance according to the exposure time of ammonia based on AEGL, an acute exposure standard applicable to the general population, which is includes vulnerable groups such as infants, children and the elderly and designated by the EPA. The calculation formulas for each concentration and exposure time to classify the hazardous area according to AEGL-3 and the semi-dangerous area according to AEGL-2 were derived. A comparison of the relative standard deviation between the damage impact distance values of CARIS revealed that is was in the range of 0~2%. Local governments should consider the actual accident situation and apply the appropriate damage-affected distance calculation formula derived from the study to evacuate residents near the origin of the accident or use for protective measures such as indoor evacuation notification.

Study on the Thermal Buffer Mass and Phase Change Material for Thermal Control of the Periodically Working Satellite Component (주기적으로 작동하는 위성부품 열제어용 열적완충질량과 이를 대체할 상변화물질을 이용한 열제어부품의 비교연구)

  • Kim, Taig Young;Seo, Jung Gi;Hyun, Bum-Seok;Cheon, Hyeong Yul;Lee, Jang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1013-1019
    • /
    • 2014
  • Solid-liquid Phase Change Material(PCM) as a thermal control hardware for the electro-optical payload of low earth orbit satellite is numerically studied which can be substituted with Thermal Buffer Mass(TBM). The electro-optical module in LEO satellite is periodically work and high heat is dissipated during the imaging period, however, the design temperature range is very tight and sensitive. In order to handle this problem TBM is added and as a result the time constant of the module temperature increases. TBM is made of Al6010 and its mass directly affects the system design. To save the mass PCM is suggested in this study. The latent heat of melting or solidification is very high and small amount of PCM can play a role instead of TBM. The result shows that only 12% of TBM mass is enough to control the module temperature using PCM.

Numerical Modeling of Tide Asymmetry in the Southeast Coastal Zone of Yellow Sea (서해남부해역의 조석 비대칭에 대한 수치모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.429-441
    • /
    • 2011
  • In the southeast coastal zone of Yellow Sea, the tide characteristics showing ebb-dominant tide and tidal flow were confirmed by analysis of observed tide and tidal currents. Physical factors generating asymmetric tide were reviewed. Influence of bottom shear stress, tidal flat, and nonlinear terms in shallow water equations was investigated by two-dimensional tide modeling. The model results gave good agreements with observed tides, but the amplitude of simulated $M_4$ tide was less than that of observed tide. The tidal flats existing in the study area widely have great effect on the generation of nonlinear tide. The M4 tide is mainly generated near the tidal flats. The deletion of tidal flats prevents the production of the M4 tide. We can conclude that the wide tidal flats is a primary cause of tide asymmetry in the study area.

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper (MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, B.F.,Jr;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

Floc Behaviors Due to Flocculation Process (응집현상에 의한 플럭의 거동 변화)

  • Son, Minwoo;Park, Byeoung Eun;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.253-253
    • /
    • 2019
  • 유사의 이동은 하천, 해안 지역과 같은 수계에서 하상의 변동, 침식과 퇴적을 일으켜 지형적인 변화를 초래한다. 유사의 이동은 유사의 특성과 유체의 유수동역학적 특성에 의해 결정되며 유체특성 간의 복잡한 상호 작용에 의해 변화한다. 유사가 가지는 점착성은 유사의 특성에 큰 영향을 끼친다. 입자의 크기가 매우 작은 점착성 유사는 그 표면이 가지는 전자기적 점착력에 의해 주위의 1차 입자나 다른 작은 알갱이들이 서로 뭉치는 응집과 충돌에 의해 크기가 작아지는 파괴의 과정을 겪는다. 이 과정을 응집현상이라고 하며 응집현상을 통해 점착성 유사의 크기와 밀도, 침강속도는 계속해서 변화한다. 따라서 점착성 유사의 응집거동 고려한 유사 이동 연구는 필수적이다. 과거 연구의 많은 사례에서 유사의 크기와 농도는 비례 관계를 가지는 것이 일반적이라 알려져 있다. 그러나 실제 현장에서 측정한 결과 유사의 크기와 농도가 반비례 관계를 가지는 특이점이 발견되었다. 실측 연구에서 발견된 응집거동에 따른 유사의 특성의 특이한 변화를 설명하기 위해 1차원 연직 수치 모형(1DV)을 이용하여 수치 실험을 수행하였다. 모의 수행 시, 흐름 조건을 크기와 방향이 일정한 순방향흐름(Current)에 특정 주기와 진폭을 가지는 진동 흐름(Oscillatory Flow)을 추가하여 진행하였다. 플럭의 성장과 그에 따른 입자의 크기는 많은 현상에 영향을 받는다. 그 중 응집현상의 응집 과정과 파괴 과정 중 어떤 현상이 더 우세한지 그 경쟁관계를 파악하여 플럭의 크기의 증감을 예측할 수 있게 농도(?)와 난류소산매개변수(?)를 이용하여 $c/G^{0.5}$로 매개화하였다. 실험 결과, 순방향 흐름을 제외하고 스토크스파 흐름 조건을 이용하여 진행된 모의에서는 플럭의 크기와 농도가 반비례하는 현상을 관찰할 수 없었으며 $c/G^{0.5}$ 의 변화 역시 흐름의 속도와 농도가 더 큰 지점에서 큰 값을 가지는 일반적인 결과를 나타내었다. 그러나 같은 조건에서 순방향흐름을 추가하여 모의한 결과에서는 플럭의 크기와 농도가 반비례하는 현상을 나타냈다. 연직 방향 $c/G^{0.5}$의 변화를 나타낸 그래프에서 응집과 파괴의 우세에 따라 $c/G^{0.5}$ 가 역전되는 현상을 확인하였다. 즉, 플럭의 크기는 난류의 구조와 그 영향에 의해 농도와 비례관계를 갖지 않을 수도 있다고 판단된다. 또한 본 연구에서 정상류 흐름 조건의 유무에 따라 플럭의 크기와 농도가 비례하거나 반비례하는 상반된 결과를 보였다. 정상류 흐름 조건이 난류의 강도에 큰 역할을 하며 이에 따라 비선형 관계에 영향을 끼친다는 것을 발견하였다. 그러나 흐름의 영향에 대한 더 자세한 분석은 본 연구에서 진행되지 않았으며 향후 연구 시에 분명히 고려되어야 할 사항이다.

  • PDF

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.